

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration

National Marine Fisheries Service Alaska Fisheries Science Center Auke Bay Laboratories Ted Stevens Marine Research Institute 17109 Point Lena Loop Road Juneau, Alaska 99801-8344 Fax (907) 789-6094

FINAL Project Instructions

Date Submitted: A

August 17, 2015

Platform:

NOAA Ship Oscar Dyson

DY-15-08/09 (OMAO)

BASIS, EMA/FOCI

Project Number:

Project Title:

Project Dates:

September 5 to September 18, 2015 (DY-15-08) September 21 to October 6, 2015 (DY-15-09)

Dated: 8/17/2015-

Prepared by: Alex G. Andrews III Chief Scientist

Approved by:

Dated: 8/17/2015

Edward V. Farley, Jr. Program Manager Ecosystem Monitoring and Assessment Program

Ecosystem Monitoring and Assessment Program

Approved by:

Phillip Red

8/17/15 Dated:

Phillip R. Mundy Director Auke Bay Laboratories

- 10. -

Approved by:

Dated: _

Commander Joe C. Bishop, NOAA Acting Commanding Officer Marine Operations Center – Pacific

I. Overview

A. Brief Summary and Project Period

Project Period: September 5- October 6, 2015

This research area is focused on improving and reducing uncertainty in stock assessment models of important commercial fish species in the Bering Sea through the collection of fisheries oceanographic indices.

B. Days at Sea (DAS)

Of the _30_ DAS scheduled for this project, _27_ DAS are funded by an OMAO allocation, _0_ DAS are funded by a Line Office Allocation, _3_ DAS are Program Funded, and _0_DAS are Other Agency funded. This project is estimated to exhibit a High Operational Tempo.

C. Operating Area

Eastern Bering Sea (see Appendix 1, 2).

D. Summary of Objectives

Note: Several major changes from past BASIS surveys are: 1) trawls at predetermined grid stations will be fished as oblique tows NOT surface tows, and 2) we will no longer divide the 24 hour period into day and night operations; day and night operations will be the same.

Summary of Objectives: Fisheries (oblique, midwater, and beam trawls) and oceanographic survey to:

(1) Describe the community structure, biomass, energetic status, diets, and biological composition of epi-pelagic nekton including Pacific salmon, Pacific cod, age-0 pollock, jellyfish, herring, capelin and sand lance.

(2) Collect electronic oceanographic data including CTD (Conductivity-temperaturedepth) vertical profiles of temperature, salinity, light transmission, chlorophyll a fluorescence, dissolved oxygen, photosynthetic available radiation (PAR). Continuously (along-track) collect sea surface temperature, salinity, chlorophyll a (chl-a) fluorescence data and above surface PAR (Hobo PAR sensor and data logger).

(3) Collect biological oceanographic samples (water and plankton) at trawl stations; i.e. zoo- and ichthyoplankton data using a 20 and 60 cm bongo samplers (oblique tow with 150 μ m and 505 μ m nets, respectively to near bottom or 300 m), and nutrients, chl-a, dissolved oxygen, and salinity using Niskin bottles attached to the carousel housing the CTD. These samples are collected to yield environmental indices of the current status and trends in the Bering Sea ecosystem.

(4) Conduct beam trawls for age 0 and age 1 arrowtooth flounder and other flat- and demersal fishes. Beam trawls will be conducted only at stations between 100 and 200 m depth.

(5) Conduct jellyfish sampling and experimentation to determine the diets and feeding rates of the dominant large jellyfish, *Chrysaora melanaster*, on fish eggs and larvae and on important fish prey (copepods, ichthyoplankton, euphausiids). Experiments will run in 24 hour intervals and require dip-netting of up to 150 individuals.

(6) Collect and analyze phytoplankton samples from Niskin bottles for taxonomic information using a bench-top phytoplankton imaging system (flow cytoBot) and a flow cytometer at a subset of stations.

(7) Collect water from Niskin bottles and conduct primary production experiments with stable (non-radioactive) isotopes using deck-board incubators cooled with surface seawater. Experiments will be conducted at a subset of stations.

(8) PMEL and AFSC will conduct oceanographic sampling along the standard 70 m isobath transect, at Designated Biological Observation (DBO) area 1, transects over the Bering Canyon and along the Unimak Box during DY-15-09.

(9) Collect microzooplankton samples from Niskin bottles at a subset of stations.

(10) Sort zooplankton to taxa for energetics analysis (fatty acids and genetics) and conduct deckboard incubation experiments on *Calanus* spp. at a subset of stations.

(11) Bering Sea mooring (M2) may be retrieved during DY-15-09. It is not expected that the Dyson will need to recover moorings, and will only serve as a backup if a charter vessel (R/V Aquilla) is unable to retrieve the moorings.

E. Participating Institutions

AFSC - Alaska Fisheries Science Center, Juneau, AK and Seattle, WA

PMEL - Pacific Marine Environmental Laboratory, Seattle, WA

USFWS - United States Fish and Wildlife Service, Anchorage, AK

WHOI - Woods Hole Oceanographic Institution, Woods Hole, MA

F. Personnel/Science Party: name, title, gender, affiliation, and nationality

Name (Last, First)	Title	Date Aboard	Date Disombork	Gender	Affiliation	Nationality
Andrews Alex	Chief Scientist			м	AFSC	USA
Allulews, Alex	Cillel Scientist	0/10	9/10	NI NI	AFSC	USA
Cooper, Dan	Fish Res. Biol.	9/3	10/7	М	AFSC	USA
Cieciel, Kristin	Fish Res. Biol.	9/3	9/18	F	AFSC	USA
Spear, Adam	Fish Res. Biol.	9/3	9/18	М	AFSC	USA
Ferm, Nissa	Fish Res. Biol.	9/3	9/18	F	AFSC	USA
Tabisola, Heather	Oceanographer	9/3	9/18	F	PMEL	USA
Strausz, David	Oceanographer	9/3	10/7	М	PMEL	USA
Auburn-Cook, Mary	Fish Res. Biol.	9/3	10/6	F	AFSC	USA
Dalke, Heather	Fish Res. Biol.	9/3	10/6	F	AFSC	USA
Reedy, Marty	Sea Bird Obs.	9/3	10/6	М	USFWS	USA
Eisner, Lisa	Chief Scientist	9/19	10/7	F	AFSC	USA
Harpold, Colleen	Fish Res. Biol.	9/19	10/6	F	AFSC	USA
Doyle, Miriam	Fish Res. Biol.	9/19	10/7	F	AFSC	USA
Strasburger, Wess	Fish Res. Biol.	9/19	10/7	М	AFSC	USA
Tarrant, Ann	Oceanographer	9/19	10/7	F	WHOI	USA
Proctor, Peter	Oceanographer	9/19	10/7	Μ	PMEL	USA

G. Administrative

1. Points of Contacts:

Alex Andrews (Chief Scientist, DY-15-08), AFSC, 17109 Point Lena Loop Road, Juneau, AK 99801, ph: 907-789-6655, <u>Alex.Andrews@noaa.gov</u>

Lisa Eisner (Chief Scientist, DY-15-09), AFSC, 7600 Sand Point Way NE, Bldg 4, Seattle, WA 98115, ph: 206-526-4060, Lisa.Eisner@noaa.gov

Dan Cooper (Alternate), AFSC, 7600 Sand Point Way NE, Bldg 4, Seattle, WA 98115, ph: 206-526-4330, <u>Dan.Cooper@noaa.gov</u>

Ed Farley (EMA Program Manager), AFSC, 17109 Point Lena Loop Road, Juneau, AK 99801, 907-789-6085, Ed.Farley@noaa.gov

Janet Duffy-Anderson (RP Program Manager), AFSC, 7600 Sand Point Way NE, Bldg 4, Seattle, WA 98115, ph: 206-526-6465, Janet.Duffy-Anderson@noaa.gov

Phyllis Stabeno (PMEL Program Manager), PMEL, 7600 Sand Point Way NE, Bldg 3, Seattle, WA 98115, ph: 206-526-6453, Phyllis.Stabeno@noaa.gov

Oscar Dyson

CO cell: 206-271-4475 XO cell: 206-295-0775 CME cell: 206-604-4685 Iridium: 808-659-0050 Underway VIOP: 301-713-7778 INMARSAT: 011-870-336-995-920 (voice)

Field Operations Officer, Lt. Carl Rhodes <u>Ops.oscar.dyson@noaa.gov</u>

2. Diplomatic Clearances

None Required.

3. Licenses and Permits

This project will be conducted under the Scientific Research Permit (U.S.) issued by the Alaska Regional Office, National Marine Fisheries Service (Permit number 2015-B1), and a Fish Resource Permit issued by the State of Alaska (Permit number CF-15-057). The Chief Scientists will be included as an authorized participant on both permits.

II. Operations

The Chief Scientist is responsible for ensuring the scientific staff are trained in planned operations and are knowledgeable of project objectives and priorities. The Commanding Officer is responsible for ensuring all operations conform to the ship's accepted practices and procedures.

A. Project Itinerary:

DY-15-08	
Sep 3	Embark scientists in Dutch Harbor, AK
Sep 5	Depart Dutch Harbor, AK for eastern Bering Sea
Sep 5 - 17	Fish/Ocean survey
Sep 18	Arrive Dutch Harbor, AK
Sep 18 - 19	Disembark scientific party
_	
DY-15-09	
Sep 19	Embark scientists in Dutch Harbor, AK
Sep 21	Depart Dutch Harbor, AK for eastern Bering Sea
Sep 21 – Oct 3	Fish/Ocean survey
Oct 6	Arrive Kodiak, AK
Oct 6 - 7	Disembark scientific party

B. Staging and Destaging:

The scientific gear necessary for the project will be shipped to Kodiak and loaded onto NOAA Ship *Oscar Dyson* along with DY 15-07 survey gear prior to departure from Kodiak on 20 (Sunday) August 2015.

Most scientific gear will be offloaded in Kodiak, AK at the end of DY 15-08/09 survey on 6 (Tuesday) October 2015. Request DY transport biological and oceanographic samples, equipment, and chemicals to Newport, OR. Request DY transport pelagic trawls and bridles to Newport, OR for annual maintenance.

C. Operations to be Conducted:

1. DY-15-08 Only. Perform several test tows with new NETS 156 pelagic trawl. Since this is the first time using this trawl we would like to perform test tows to evaluate trawl performance. We would like to attach Simrad net sounder and ITI sensors to collect net mensuration data. This will give us an opportunity to adjust tom weights and headrope flotation as needed. We will consult with CO and OPS officer to select an area where the water depth and weather will allow for a variety of tests.

2. DY-15-08 & DY-15-09. Survey operations will be conducted during day and night-time periods. Therefore, we request 24 hour operations, with sufficient deck and survey support for all operations. Stations will be sampled using a systematic grid design with stations spaced every 30 minutes of Latitude and 1 degree of Longitude. The main survey grid will cover the area from 160° W to 173° W at locations with water depths of at least 25 meters (see Appendix 1). We have achieved stations of this depth in the past on *Oscar Dyson*, but as always, we can modify trawl station locations if the CO chooses.

3. DY-15-08 & DY-15-09. Pelagic trawl operations require that the NETS 156 pelagic trawl be loaded onto the net reel. A pair of NETS five-meter alloy doors and thirty fathom wire rope bridals will be used with the trawl. We may need to experiment with adding tom weights to the footrope and trawl floats to the headrope to obtain an adequate vertical mouth opening. A second pair of NETS doors will be stored on board the vessel as backup gear. A Stauffer (also known as Anchovy, Cobb) trawl will be loaded onto the second net reel as a spare net. Thirty fathom bridles and the NETS doors will be used to fish the net Stauffer trawl. A spare shrimp trawl will be aboard as an additional backup. We request that the Chief Boatswain keep a trawl gear logbook to record all modifications made to trawl gear during the project. An average of 5 pelagic trawl hauls and an occasional opportunistic targeted midwater per 24 hrs is anticipated.

Pelagic trawl haul duration will vary depending on water depth, beginning when the doors go in and ending when the doors come out. The Simrad FS-70 3rd wire net sounder **will** be place on the kite at the headrope to provide real-time net dimensions. In addition, SBE39 sensors will be placed on the headrope and footrope of the surface trawl to collect data on vertical spread and location in the water column. Potentially, Simrad ITI sensors (i.e. trawl monitoring system) will be attached to the footrope for real-time depth information. Since we are testing a new pelagic trawl, we may also want to use the Simrad ITI sensors to measure spread at other areas of the trawl. Since we are unfamiliar with the NETS 156 pelagic trawl, we will place small cameras on the trawl to learn more about the water flow characteristics and possible areas of fish escapement.

Targeted midwater trawl hauls will be made to identify acoustic backscatter and to provide fish samples and other biological data. Targeted midwater trawl hauls will be conducted during day and night time hours when suitable backscatter conditions are encountered. Tow duration will depend on the echosign present, but it is generally anticipated that no more than 30 minutes will be spent within the scattering layer (estimate excludes trawl deployment/recovery times). The Simrad FS-70 system **will** be used for all targeted midwater hauls. Additionally, an SBE39 sensor will be attached to the trawl headrope and another to the footrope to estimate net mouth vertical opening.

Biological data collected from each haul will include species composition by weight and number, sex composition, length frequencies, whole fish weight, maturities, salmon scales, and otoliths.

4. DY-15-08 & DY-15-09. Acoustic data will be collected continuously with a Simrad ER60 echo integration system incorporating centerboard-mounted transducers at 18, 38, 70, 120, and 200 kHz. The centerboard should be left in the **intermediate** position during the entire project. It is requested that vessel not operate other echo sounders or acoustic equipment that interferes with collection of scientific acoustic data unless it is unsafe to navigate without them. The bow thrusters, Doppler speed log and bridge Furuno depth sounder should all be secured, as long as it is safe to do so as determined by the ship's OOD, as they degrade the quality of acoustic data.

5. DY-15-08 & DY-15-09. At each predetermined trawl station, small fishes and zooplankton will be sampled using fine-mesh nets: 60 cm diameter bongo nets (oblique tow) with 505 (Net 1) and 505 (Net 2) micron nets, and a 20 cm bongo array with 150 micron nets. Zooplankton net tows will occur during day and night-time hours. The bongo net will be deployed on one of the oceanographic winches with conducting wire (using real time CTD data collected with an SBE19 or SBE 49). Plankton samples will be preserved in 5% buffered formalin. 60Bon Net 1 (505 mesh) will be preserved for zoo- and icthyoplankton and 60Bon Net 2 will be sorted at sea for special projects and then discarded. 20 Bon Net 1 will be preserved for zooplankton, 20 Bon Net 2 will be sorted for special projects (time permitting) and discarded. Zooplankton tows will be to near-bottom (5-10 m from bottom) or 300 m (if bottom depths are > 300 m).

6. DY-15-08 & DY-15-09. CTD casts will be conducted at each surface trawl station and *ad-hoc* casts may be necessary to document changes in oceanographic characteristics during the survey. For each cast, instruments and 5 or 10 L Niskin bottles will be added to the ship's CTD carousel. Instruments added to the ship's SBE 911+ CTD include secondary TC sensors, a PAR spherical sensor (Biospherical Instruments QSP 2300), chl-a fluorometer with turbidity sensor (Wet Labs ECO FL-NTU), beam transmissometer (Wet Labs C-star), and two dissolved oxygen sensors (SBE 43). See fact sheets for all instruments. CTD casts will be to near-bottom (5-10 m from bottom).

7. DY-15-08 & DY-15-09. We will collect along-track surface measurements of temperature, salinity, chlorophyll a fluorescence with the ship's thermosalinograph (TSG) system (SBE-45, Wet Labs WetStar fluorometer).

8. DY-15-08 & DY-15-09. Water samples collected with Niskin bottles attached to the CTD will be sampled for chlorophyll a, nutrients, salinity, oxygen, phytoplankton taxa, primary production experiments and possibly microzooplankton (preserved with Lugols). Primary production experiments using stable (non-radioactive) isotopes will be conducted at a subset of stations using deck-board incubators cooled with surface seawater. Chl-a and primary production samples must be stored in the -80 freezer.

9. DY-15-08 & DY-15-09. Above surface PAR data will be continually recorded with a HoBo PAR sensor and data logger mounted on the flying bridge.

10. DY-15-08 Only. Up to 200 samples of the target species *Chrysaora melanaster* will be collected for gut analysis. Jellyfish will be netted from the hero deck at the surface with a long-handled dip-net or with a 1-m "gel net" to keep sample intact and to minimize net damage. If time allows on station, we may request that the hero deck platform be deployed to allow for easier netting of specimens further away from the ship's hull. A total of 25 specimens will be collected per station to allow analysis of the relationship between the local diet and local oceanographic, zooplankton, and pelagic fish community observations. Upon collection, individual jellyfish will be weighed and measured, and all gut and appendage contents will be immediately preserved in 5% formalin in separate containers. Samples will be processed for diet analysis in the laboratory or onboard depending on vessel staffing and time.

11. DY-15-08 Only. Gut evacuation experiments will be conducted September 5 - 18 to estimate digestion times of different prey types by the jellyfish, *C. melanaster*. During the BASIS surveys aboard NOAA Ship *Oscar Dyson*, 40 jellyfish will be dip-netted from the sea surface and placed in 20 20-L containers filled with 80-µm filtered seawater at ambient temperatures in total darkness. Individual feeding intensity will be factored into determining digestion rates. Ten jellyfish will be removed and preserved at 0, 2, 4, and 6h intervals. Individual jellyfish will be placed in separate containers in 5% buffered formalin and gut contents will be enumerated as above. Deck space for tanks with seawater access will be needed; approximately a 6 foot by 6 foot footprint.

12. DY-15-08 & DY-15-09. Beam trawls will be conducted at each predetermined trawl station where bottom depth is between 100 and 200 meters. A modified plumb-staff, 3-m beam trawl will be deployed to collect juvenile flatfishes and demersal gadids from the seafloor.

We request assistance from the Bridge, Survey, and Deck Dept with deployment, fishing/monitoring, and retrieval of beam trawls. We will use the ITI (trawl eye) system to monitor depth of the trawl in real time. Assistance from the Bridge and Deck department with ITI (trawl eye) is requested for deployment, retrieval, and keeping it charged. An SBE-39 will be attached to a steel ring on the beam trawl bridle. We request assistance from the survey department to initialize the SBE-39 and download the data from each tow.

The trawl codend should be inverted and inspected after each trawl to ensure all juvenile flatfish and other small taxa are retained.

Processing:

Sorting: Upon retrieval of trawl to the deck, contents will be emptied into the trawl sorting conveyor and photographed (identify station/haul in photo) for associated benthic fauna and substrata. Rinsing the entire catch may be necessary if it is muddy. Fish should be sorted into the following taxonomic groups: Flatfish species [flatfish juveniles (<120 mm TL) may be sorted separately from larger fish], walleye pollock, Pacific cod, Arctic cod, other expedient and logical taxonomic fish groups (ex. poachers, snailfishes, sculpin).

Invertebrates are to be sorted into the following taxonomic groups: Hermit crabs, gastropods, king crab to species, chionoecetes spp., other crabs, sea stars, brittle stars, sponge, bivalves and bivalve shell (greater than $\frac{1}{2}$ of a shell), worm tubes, shrimps, and

other taxonomic groups as possible.

Subsamples may be rinsed with a 2 mm sieve if muddy.

Lengths: lengths for the following taxonomic groups will be recorded:< 120 mm TL junveile flatfish to species (TL mm), flatfish>12 cm TL to species (TL cm), Pacific cod (age-0 SL mm, age-1+ TL cm), walleye pollock (age-0 SL mm, age1+ FL cm), Arctic cod (FL mm).

STORAGE:

After counting and weighing, flatfish juvenile species groups containing fish < 120 mm TL, age-0 walleye pollock, and age-0 Pacific cod will be saved and frozen (1 bag per species) in the -80 C freezer in the rough lab. Project, date, station, haul, and species should be recorded on the outside of the bag and inside on a bag label. After 24 hours, bags of frozen fish may be transferred to the (-20 F, slime lab freezer).

Chionoecetes crabs will also be preserved by freezing. Please mark station/haul/species/Ryer (inside label and outside bag).

All other species may be discarded.

13. DY-15-08 & DY-15-09. Standard station activities include:

- CTD cast with Niskin water sample collection.
- Jellyfish (when present near surface) sampled with dipnet.
- Oblique bongo net tow (FOCI set-up, 20 & 60 cm bongo).
- Pelagic oblique trawl (average 5 tows/day)

- Targeted mid-water trawl (opportunistically; location and duration determined at sea).

- Beam trawl (only at stations between 100 and 200 m depth.

We expect activities and travel between stations to take 4 to 6 hours, depending on schedule for the mid-water trawl.

We plan for 2 scientific teams with 12 hour shifts each. It is likely that the first shift will begin on or around 06:00 am and end at 18:00 and the second shift will begin around 18:00 and end around 06:00. When time allows, we request assistance from the survey techs sorting and processing the fish catch.

14. DY-15-09 Only. A multinet will be deployed at select stations (see Appendix 2). The Multi Plankton Sampler MultiNet Type Midi will be used at select stations to determine vertical distribution of fish larvae and zooplankton (0.333 mm mesh). The sampling will be focused over Bering Canyon, approximately 12 stations. The exact number and location will be determined by the scientific party at sea and may be adjusted depending on conditions and project priorities.

During multinet deployment, we request assistance from the ship's Electronics Technician, Survey Technician and / or Deck Department as needed to help set up the electronic and physical termination, rig the MultiNet for fishing, and help trouble shoot the MultiNet. We also request help switching between the Bongo and MultiNet on the aft Oceowinch as needed during the project.

The MultiNet has a steel frame with a square mouth opening of 0.5 x 0.5 m that can be used with up to 5 nets to sample different water depths. This net requires a conducting cable and will be deployed off the aft oceanographic winch that the Bongo array is usually attached to. Before deployment of the Multinet, the Seacat and Bongo array will be detached and the MultiNet will be electronically and physically terminated to that conducting wire. For the stations over Bering Canyon, the MultiNet will be used in place of the Bongo (after the CTD). If we have gear problems with the Multinet, the Bongo will be used as a backup. When we are done using the MultiNet, the Seacat and Bongo Array will be reconnected to continue the rest of our routine sampling. The MultiNet plankton samples will be processed in a similar manner as those from the Bongo, filtered and preserved in 1.8% Buffered Formaldehyde (5% buffered formalin).

Winch / Fishing Rates (Multinet) -Ship Speed: ~2.5-3 knots (may need to be adjusted based on conditions) -Wire Payout Rate: 20 m per. min. -Wire Retrieval Rate: no more than 10 m per min., possibly slower TDB by scientific party based on how much water is being filtered. -Target Wire Angle 55° (acceptable range 50°-60°) -Maximum Gear Depth: ~ 300 m or 10m off bottom MOA Buttons Needed for SCS -In the water (surface) -At Depth -Net 1 -Net 2 -Net 3 -Net 4 -Net 5 -Out of the water (surface)

Approximate Sampling Intervals (may change depending on bottom depth and sampling needs):

0-25 m 25-50 m 50-100 m 100-200 m 200-300 m

15. DY-15-08 & DY-15-09. The Scientific Computing System (SCS) will be configured to log data from a large array of sensors during the project including data from the thermosalinograph, CTD casts, weather data (particularly above surface PAR or other light measurements and wind speed and direction), etc.

16. DY-15-09 Only. 70-m isobaths. This portion of the project will serve to continue a long-term time series of observations describing the physical and biological properties of the Bering Sea shelf. Information will be collected

through CTD casts and water sampling, underway shipboard measurements and plankton tows along the 70m isobath and at stations around the moorings. Activities: CTD - 70 m isobaths (chlorophyll 0, 10, 20, 30, 40, 50 m; nutrients 0, 10, 20, 30, 40, 50, near-bottom). Stations will likely be occupied from south to north. A CTD cast will be the first operation at each station. At every other station along the isobath, a bongo tow will occur. When at the stations around or at each mooring, both a CTD and bongo will be done and when at the mooring stations triplicate CalVET (i.e. vertical zooplankton sampling nets) tows will be completed as the last operation.

Bongo towing 70 m isobath: Paired, 60 cm/20 cm bongo nets will be deployed. The 60 cm diameter bongo nets (oblique tow) will be rigged with 505 (Net 1) and 333 (Net 2) micron nets and the 20 cm bongo nets will be rigged with 153 micron nets (Nets 1&2). The bongo net will be deployed on the aft oceanographic winch with conducting wire (using real time CTD data collected with an SBE19 or SBE 49). Plankton samples will be preserved in 5% buffered formalin. 60Bon Net 1 (505 mesh) and Net 2 will both be preserved for future zooplankton sorting (a between net catch comparison will be performed). 20 Bon Net 1 will be preserved in buffered formalin and 20 Bon Net 2 will be discarded or used for special projects.

17. DY-15-09 Only. At Distributed Biological Observatory (DBO) stations (located southeast of St Lawrence island, see Appendix 1,2), CTDs and bongo tows will be conducted.

18. DY-15-09 Only. Unimak CTD Box. A CTD (with nutrient and chlorophyll samples) will be deployed at each of 18 stations in a "box" around Unimak Pass. A 20/60 cm bongo will be deployed at every station within Unimak Pass and every other station on the other sides of the box for collection of mesozooplankton. If there is not enough time to complete the entire box, the top priority is the western side of the box (UBW1, UBW2, UBW3, UBW4) and second priority is the stations in Unimak Pass (UBS1, UBS2, UBS3, UBS4).

19. DY-15-09 Only. Mooring operations (for schematics see Appendix 3). It is not expected that the Dyson will need to recover moorings, and will only serve as a backup if a charter vessel (R/V Aquilla) is unable to retrieve the moorings. Prior to recovery of moorings, calibration CTDs with nutrient and chlorophyll samples will be completed approximately 0.5 miles from the mooring sites.

D. Dive Plan

All dives are to be conducted in accordance with the requirements and regulations of the NOAA Diving Program (<u>http://www.ndc.noaa.gov/dr.html</u>) and require the approval of the ship's Commanding Officer.

Dives are not planned for this project.

E. Applicable Restrictions

Conditions which preclude normal operations: None known.

F. Marine Mammal, Endangered, and Protected Species

During fishing operations, take all proactive steps to avoid deploying the gear in any situation where there is a high likelihood for an incidental take of protected species or marine mammals. This could mean delaying a set or moving to a suitable alternate site. Be on the look for marine mammals or other protected species prior to initiating a tow and also at haul back.

Within 24 hours of any incidental take of, or injuries or mortalities to, marine mammals as a result of operations, the Chief Scientist/Field Party Chief shall report incident to the vessel CO, Jon Kurland (jon.kurland@noaa.gov, 907-586-7638) or Robyn Angliss (robyn.angliss@noaa.gov, 206-526-4032), and guy.fleischer@noaa.gov and jeff.napp@noaa.gov with cc to john.c.clary@noaa.gov. This information will be entered into the Protected Species Incidental Take (PSIT) system per instructions below.

Seabirds can be sampled and retained for salvage – if take involves seabird, include Shannon Fitzgerald in notification at shannon.fitzgerald@noaa.gov. If take involves ESA-listed bird, retain specimen and we will notify FWS (to issue collection authority). Do not retain gulls – except Kittiwakes. Albatross are high priority.

KEY ACTIONS IN RESPONSE TO ALL INCIDENTAL TAKES

1. Prior to the project, communicate and coordinate with vessel crew about established protected species incidental take reporting and handling procedures whether NOAA, charter, or partner project. Ensure regional ESA biologists and pertinent staff are in the PSIT email alert notification list. The Office of Law Enforcement (OLE) will be notified of takes via PSIT email alert system for all non-marine mammal takes including seabirds within 48 hours of the event.

2. Notify the geographically-appropriate Regional Stranding Response Coordinator (numbers in this document) immediately following the incidental take of a marine mammal. Stranding Response Coordinator will contact Office of Law Enforcement (OLE). For live injured/uninjured marine mammals, priority should be to release the animal before notifying stranding response networks. NOTE: If Coordinators are unreachable, collect pertinent PSIT information and release animal and/or retain carcass if logistically feasible.

3. For a sea turtle or protected fish (injured/live/dead), follow the Terms and Conditions stated in your Fisheries Independent Monitoring Biological Opinion regarding reporting and data collection. If you do not have a current Biological Opinion, contact your designated Regional or Science Center Protected Species Point of Contact for instructions.

4. For handling, sampling and salvaging seabirds (ESA and non-ESA listed), contact regional United States Fish and Wildlife Service (USFWS) points of contact or NMFS regional seabird coordinator. If you have a permit, report seabird takes to PSIT.

PRE-PROJECT ACTIONS

1) Prior to the project, communicate and coordinate with vessel crew about established protected species incidental take reporting and handling procedures whether NOAA, charter, or partner project.

2) Ensure regional ESA biologists and pertinent protected resources staff is in the PSIT email alert notification list.

3) The NMFS Chief Scientist or Designee shall contact the appropriate Regional Stranding Network and query about additional numbers or specific contacts to reach in case of an incidental take of a marine mammal.

WHAT TO DO WITH LIVE, INJURED OR UNINJURED MARINE MAMMAL

If a live, injured or uninjured marine mammal is incidentally captured, the animal should be released immediately.

1) Considering human safety, work from the vessel as quickly and carefully as possible to free the animal from the gear. Ensure the animal can continue to breathe while freeing from the gear.

2) If it can be done immediately without further harming the animal, photograph the animal (dorsal and ventral sides including dorsal fin, flanks, head/jaw) and gear interaction at time of capture and when free from gear prior to release and collect required PSIT information.

3) If animal is NOT brought aboard the vessel and taking photos is not an option, provide a comprehensive summary of the incident following requirements described under 'PSIT narrative' in this document.

4) Notify Regional Stranding Response Coordinator about the incident.

5) Submit take information for submission to PSIT and attach any forms, photos, and narrative to the take record within a week of the event.

Note: Untrained personnel should not attempt to handle live injured/uninjured marine mammals or disentangle large whales. In the event of a large entangled whale, immediately call your regional entanglement response network.

WHAT TO DO WITH DEAD MARINE MAMMAL OR SEA TURTLE?

1) Notify Regional Stranding Network Coordinator about the take of a dead marine mammal.

2) For sea turtle takes, simply report the take/s to PSIT and follow the instructions listed in your Biological Opinion or follow Regional or Science Center Protected Species Point of Contact instructions.

3) If logistically feasible, the animal should be hauled aboard the vessel and retained for pick up by the local Stranding Network. Develop a plan with Stranding Network Coordinator or regional ESA biologist and/or relevant Center scientist for carcass pickup and subsequent necropsy.

4) If the animal cannot be hauled aboard due to human safety consideration or there is no feasible way for carcass retention onboard, release animal after necessary information is collected as described below.

5) Photos of the carcass should be taken: Dorsal fin, ventral side, and flank for marine mammals, as well as signs of entanglement, scars, and injuries. This also includes collecting required PSIT data.

6) Submit take information for submission to PSIT and attach any forms, photos, and narrative to the take record.

PSIT Reporting

Report [1] Species involved, [2] number dead, number injured and released, or number uninjured and released, [3] date and time, [4] latitude and longitude, [5] any mitigation measures taken, [6] other comments or observations germane to this take. Note if photo was taken.

In addition to the required PSIT information please complete a narrative which includes the following information.

1) Animal Condition (include photos)

Code 1 – Live Animal

Code 2 - Fresh Dead

Code 3 – Moderate Decomposition

Code 4 – Advanced Decomposition

2) Mention if animal escaped or was released.

3) Indicate if the animal or other marine mammals or sea turtles were seen in the vicinity of the vessel during fisheries operations.

4) Animal condition post-release: Describe any observed injuries, the condition and behavioral state of released or injured animal (e.g., no obvious injuries and animal swam away vigorously, did not swim away vigorously, animal surfaced to breathe, animal sank to bottom, or blood in water observed).

5) If gear was still attached to animal after release, describe how the gear was cut and approximately how much gear is left and where it is still entangled/injured.

6) Photos: Provide comprehensive photographic evidence or written description of live/dead or injured animal. Provide pictures (if possible) of how the animal was entangled in the gear, and any gear-related interactions such as wounds or constrictions.

7) Decision-making: Include rationale for any discretionary decisions taken by Chief Scientist/crew.

8) Describe possible causes for incidental capture of the animal and any additional mitigation measures that were taken, or might be taken to prevent similar captures in all subsequent operations.

ENTANGLEMENT RESPONSE NETWORK NUMBER

Alaska Region: 1-877-925-7773

III. Equipment

- A. Equipment and Capabilities provided by the ship (itemized)
 - 1. Acoustic Equipment
 - GPS with NEMA 183 to ER60 (2)
 - 50/200 kHz ES60 Bridge sounder
 - Furuno FE-700 fathometer
 - Acoustic echosounders (5)
 - 2. Trawling Equipment
 - 3rd wire FS-70 net sonar with winch and accessories (2)
 - Simrad ITI net mensuration system (2)
 - Furuno CN24-40 headrope transducer
 - Stern trawl capabilities for pelagic and beam trawls
 - Slack lines and door legs
 - 3. Oceanographic Equipment
 - Both starboard oceanographic winches with conducting cable, slip rings and blocks. Forward winch terminated for CTD/rosette; aft winch terminated for SeaCat/FastCat.
 - Seabird SBE 911+CTD System
 - Seabird SBE19+CTD and PDIM for real time data on zooplankton tows
 - SBE45 Thermosalinograph with fluorometer
 - Wire speed indicators and readout for both hydrographic winches visible in Dry Lab or where SEACAT operations occur
 - Weather instr. For above surface PAR, wind speed/direction
 - Ship's crane
 - 4. Biological Sampling Equipment
 - Fish lab conveyor system
 - Catch sorting and weighing table
 - Marrel M60 60kg scale (2)
 - Marrel M60 6kg scale (2)
 - Elect. Fish meas. Board (2)
 - 5. Computing equipment
 - Scientific Computing System
 - 6. Sample storage equipment
 - Supercold freezer (-80C)
 - Walk in freezer (-10C)
 - Stand up freezer (-20C)
 - Hazmat storage cabinets
 - 7. Laboratory and exterior working space
 - Use of Pentium PC in Dry and/or Computer Lab for data analysis,
 - Scientific Computer System (SCS)

- Video monitors in Dry, Chemistry, and Wet labs for viewing SCS and Electronic MOA output
- Laboratory space with exhaust hood, sink, lab tables, and storage space
- Sea-water hoses and spray nozzles to wash nets (quarterdeck and aft deck),
- Adequate deck lighting for night-time operations,
- Navigational equipment including GPS and radar,
- Safety harnesses for working on starboard sampling station/hero platform and fantail
- Ship's crane(s) used for loading and/or deploying gear and supplies
- Surface seawater on aft deck for jellyfish experiments, primary production experiments, and zooplankton starvation experiments (see special project 2 below).
- B. Equipment and Capabilities provided by the scientists (itemized)
 - 1. Acoustic Equipment (500lbs)
 - 2. Trawling Equipment (11,000lbs)
 - New NETS pelagic trawl w/ accessories (1; 900lbs)
 - Mod-Stauffer trawl w/ accessories (1; 900lbs)
 - Shrimp trawl w/ accessories (1; 800lbs)
 - NETS 5.0m doors with accessories (2 sets; 3,000lbs)
 - 5x7 v doors (two sets: 1250lbs)
 - Spare webbing & twine
 - Spare hardware
 - Tom weights 100 lbs (4 ea 100 lb clump wts)
 - 3-m beam trawls (2)
 - All accessories to make trawls fishable and spare web if available
 - 3. Oceanographic Equipment (1,500lbs)
 - Biospherical !SP2300 PAR sensor
 - Wet labs ECO Fluorometer and turbidity sensor (FL-NTU)
 - Wet labs C-star Transmissometer
 - SBE 43 dissolved oxygen sensor (2)
 - Secondary TC sensors for SBE 911+
 - SBE 19Plus SeaCat
 - SBE 49 FastCat
 - Niskin Bottles 10 L (need 10 total+ spares) with silicon tubing
 - Filter racks and pumps (3)
 - Microscopes (compound, dissecting, stereo) (4)
 - 20 & 60 cm Bongo frames, 505/335/153 mesh nets, cod ends, weights, and flowmeters
 - CalVET frame and 53 µm mesh nets, cod ends, and flow meters
 - Multinet
 - Two wire-angle indicators
 - Bench-top phytoplankton imaging systems (flow CytoBot and flow cytometer)
 - Deck-board incubators (2) for primary production experiments
 - Deck-board tanks for jellyfish experiments

- Biological supplies (misc.) *
- 4. Biological Sampling Equipment (500lbs)
 - Dynamometer
 - Marel M60 60 kg scale (2); already on ship (MACE)
 - Marel M60 6 kg scale (2); already on ship (MACE)
 - Mechanical platform scale (2); already on ship (MACE)
 - Fish baskets (30); already on ship (MACE)
 - Fish catch logging system (CLAMS); already on ship (MACE)
 - Elect. Fish meas. Board (2); already on ship (MACE)
- 5. Miscellaneous scientific sampling and processing equipment
 - Dishpans (10, MACE)
 - 5-gal buckets (5)
 - Wading pools (small and large)
 - Two length board and strips for adult fish
 - Three length boards for small fish
 - SBE-39 temperature and depth sensor (MACE) for beam trawl
 - Triple-beam balance for small fish weights
 - 1000 Zip-loc bags (12")
 - Sieves, jar holder, funnels, squirt bottles
 - 30 cases of 32-oz jars, closures, and labels
 - 10 flowmeters, calibration data, hardware for attaching and maintaining them
 - Preservative-dispenser equipment
 - Hazardous materials spill kit
 - Spare wire angle indicator

6. Computing equipment (50lbs)

- IBM compatibles w/XP Op.System*
 - Printers*
 - Laptops
 - Cruise Operations Database (COD) software and forms

IV. Hazardous Materials

A. Policy and Compliance

The Chief Scientist is responsible for complying with FEC 07 Hazardous Materials and Hazardous Waste Management Requirements for Visiting Scientific Parties (or the OMAO procedure that supersedes it). By Federal regulations and NOAA Marine and Aviation Operations policy, the ship may not sail without a complete inventory of all hazardous materials by name and quantity, MSDS, appropriate spill cleanup materials (neutralizing agents, buffers, or absorbents) in amounts adequate to address spills of a size equal to the amount of chemical brought aboard, and chemical safety and spill response procedures. Documentation regarding those requirements will be provided by the Chief of Operations, Marine Operations Center, upon request.

Per OMAO procedure, the scientific party will include with their project instructions and provide to the CO of the respective ship 30 days before departure:

- List of chemicals by name with anticipated quantity
- List of spill response materials, including neutralizing agents, buffers, and absorbents
- Chemical safety and spill response procedures, such as excerpts of the program's Chemical Hygiene Plan or SOPs relevant for shipboard laboratories
- For bulk quantities of chemicals in excess of 50 gallons total or in containers larger than 10 gallons each, notify ship's Operations Officer regarding quantity, packaging and chemical to verify safe stowage is available as soon as chemical quantities are known.

Upon embarkation and prior to loading hazardous materials aboard the vessel, the scientific party will provide to the CO or their designee:

- An inventory list showing actual amount of hazardous material brought aboard
- An MSDS for each material
- Confirmation that neutralizing agents and spill equipment were brought aboard sufficient to contain and cleanup all of the hazardous material brought aboard by the program
- Confirmation that chemical safety and spill response procedures were brought aboard

Upon departure from the ship, scientific parties will provide the CO or their designee an inventory showing that all chemicals were removed from the vessel. The CO's designee will maintain a log to track scientific party hazardous materials. MSDS will be made available to the ship's complement, in compliance with Hazard Communication Laws.

Scientific parties are expected to manage and respond to spills of scientific hazardous materials. Overboard discharge of hazardous materials is not permitted aboard NOAA ships.

B. Inventory

See Appendix 4.

C. Chemical safety and spill response procedures

Chemicals will be transported, stored and used in a manner that will avoid any spills and adequate containment, absorbents and cleanup materials will be available in the event of a chemical spill.

The scientific chemicals to be used for this project are: (1) ethyl alcohol (100%) and (2) formaldehyde (37%). Other chemicals brought aboard are consumer products in consumer quantities. Dilutions of the scientific chemicals will be used to preserve in faunal organisms collected with bongo nets, as described in the Operations section of these Project Instructions. Use of these chemicals and the specified dilutions will only occur in exterior locations on the ship away from air intakes. Scientific chemicals shall not be disposed over the side.

Standard Operating Procedures and Information Sheets are provided here for the scientific chemicals. Included are details concerning personal protective equipment, work area

precautions, special handling and storage requirements, spill and accident procedures/first aid, waste disposal and other pertinent information. Both small and large spills are of particular concern. In both cases, the spill response is intended to first contain the spill and then neutralize it. This may be easily accomplished for small spills depending on the degree of vessel motion and the prevailing environmental conditions. In all cases, the first responder should quickly evaluate the risks of personal exposure versus the potential impacts of a delayed response to the spill and act accordingly. For example, if the spill is small and it is safe to do so, a neutralizing agent should be rapidly applied to encircle/contain the spill and then cover it. However, a large formaldehyde spill (> 1 L) is extremely hazardous and individuals at risk of exposure should immediately leave the area. The CO or OOD should be notified immediately so that a response team with self-contained breathing apparatus (SCBA) can be deployed to complete the cleanup operation or dispense the hazard with a fire hose directed overboard. The vessel's course should be adjusted to minimize exposure of personnel to wind-driven vapors and to limit spread of the spill due to vessel motion. The reportable quantity (RQ) of formaldehyde is 1,000 pounds and the RQ for ethyl alcohol is 5,000 pounds which greatly exceed the quantities brought aboard for this project.

ACID

- Wear appropriate protective equipment and clothing during clean-up. Keep upwind. Keep out of low areas.
- Ventilate closed spaces before entering them.
- Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible.
- **Large Spills**: Dike far ahead of spill for later disposal. Use a non-combustible material like vermiculite, sand or earth to soak up the product and place into a container for later disposal.
- **Small Spills**: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination.
- Never return spills in original containers for re-use.
- Neutralize spill area and washings with soda ash or lime. Collect in a non-combustible container for prompt disposal.
- J. T. Baker NEUTRASORB® acid neutralizers are recommended for spills of this product.

Formalin/Formaldehyde

- Ventilate area of leak or spill. Remove all sources of ignition.
- Wear appropriate personal protective equipment.
- Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible.
- Use non-sparking tools and equipment. Collect liquid in an appropriate container or absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container.
- Do not use combustible materials, such as saw dust.

Inventory of Spill Kit supplies

Product Name	Amount	Chemicals it is useful	Amount it can	Notes
		against	clean up	
VWR Spill kit	1	-aldehydes		
Formalex	2 – 1 gal.	Formaldehyde cleanup	1.5 gallons 1:1	Formalex will
		(all concentrations)	control	be used in
				conjunction
				with Fan-Pads
				to reduce total
				spill volume
Fan-Pads	1 roll (50	Formaldehyde cleanup	50 sheets=50-150	Formalex will
	sheets)	(all concentrations)	ml spills	be used in
				conjunction
				with Fan-Pads
				to reduce total
				spill volume
3 M Pads	10 pads	Ethanol cleanup	10 pads=10-250	Pads may be
			ml spills	reused if dried
				out
Nitrile Gloves	4 pairs	For all cleanup	N/A	Gloves will be
	each	procedures		restocked by
	S,M, L,			each survey
	XL			group
Eye	4 pairs	Formaldehyde cleanup	N/A	Eye protection
protection				will be cleaned
				before reuse
Tyvex Lab	2 coats	Formaldehyde cleanup	N/A	Coats will be
Coats				cleaned with
				Fan-Pads and
				Formalex
				before reuse
Plastic Bags	2	Formaldehyde	N/A	Bags may be
		cleanup/Fan Pads		packed full and
				sealed

D. Radioactive Materials

No Radioactive Isotopes are planned for this project.

E. Inventory (itemized) of Radioactive Materials – N/A

V. Additional Projects

A. Supplementary ("Piggyback") Projects

Description:

1. Nutrient and dissolved oxygen sample analysis will be conducted on-board ship by scientists from PMEL.

Oxygen Measurements

The procedure is based on that of Carpenter. Winkler titrations will be conducted according to WOCE/CLIVAR protocols, and described in detail in GO_SHIP Repeat Hydrography Manual, Report number 14, ICPO Publication Series No. 134, Version 1, 2010. On each cast, the number of samples and the depths sampled will depend on the oxygen profile from the CTD. In deep water, samples will be collected at every depth below 100 m. On the shelf, samples will usually be collected in the upper layer on one station and in the bottom layer on the next station. End point determinations of the Winker titration will be determined by an amperometric method. Thiosulfate will be standardized for each batch of sample titrations, and blanks will be measured periodically during the project. Side by side comparison of this method with the photometric method show differences 0.06% or +/- 0.15 umol/kg. The automated amperometric titrator was designed by Chris Langdon at RSMAS in Miami.

2. Zooplankton collected with 505- μ m mesh (or possibly 150 - μ m mesh) nets at 3-4 stations will be analyzed for fatty acid genetics (**DY-15-09 Only**). Juvenile copepods (C. marshallae/glacialis C5 copepodids) will be live-sorted under a stereo microscope. The copepods will be individually photographed and either frozen (for lipid analysis), stored in RNAlater (non-toxic liquid used for RNA preservation), or utilized in a starvation (deckboard incubation) experiment. The starvation experiment will be set up as early as possible in the project. Copepods will be added to sixteen 1-L bottles (10-20 per bottle) and either fed natural phytoplankton (coarsely filtered surface seawater) or starved (finely filtered surface seawater) and placed in deckboard incubators cooled with surface seawater (either tanks used for jellyfish digestion experiments or tanks used for primary production experiments). Animals from two bottles per treatment (fed or starved) will be sampled at each of 4 time points (1, 3, 7, and 12 days, timing adjusted as needed based on logistics).

B. NOAA Fleet Ancillary Projects

No NOAA Fleet Ancillary Projects are planned.

VI. Disposition of Data and Reports

Disposition of data gathered aboard NOAA ships will conform to NAO 216-101 *Ocean Data Acquisitions* and NAO 212-15 *Management of Environmental Data and Information*. To guide the implementation of these NAOs, NOAA's Environmental Data Management Committee (EDMC) provides the *NOAA Data Documentation Procedural Directive* (data documentation) and *NOAA Data Management Planning Procedural Directive* (preparation of Data Management Plans). OMAO is developing procedures and allocating resources to manage OMAO data and Programs are encouraged to do the same for their Project data.

- A. Data Classifications: Under Development
 - a. OMAO Data
 - b. Program Data
- B. Responsibilities: Under Development

VII. Meetings, Vessel Familiarization, and Project Evaluations

- A. <u>Pre-Project Meeting</u>: The Chief Scientist and Commanding Officer will conduct a meeting of pertinent members of the scientific party and ship's crew to discuss required equipment, planned operations, concerns, and establish mitigation strategies for all concerns. This meeting shall be conducted before the beginning of the project with sufficient time to allow for preparation of the ship and project personnel. The ship's Operations Officer usually is delegated to assist the Chief Scientist in arranging this meeting.
- B. <u>Vessel Familiarization Meeting</u>: The Commanding Officer is responsible for ensuring scientific personnel are familiarized with applicable sections of the standing orders and vessel protocols, e.g., meals, watches, etiquette, drills, etc. A vessel familiarization meeting shall be conducted in the first 24 hours of the project's start and is normally presented by the ship's Operations Officer.
- C. <u>Post-Project Meeting</u>: The Commanding Officer is responsible for conducted a meeting no earlier than 24 hrs before or 7 days after the completion of a project to discuss the overall success and short comings of the project. Concerns regarding safety, efficiency, and suggestions for future improvements shall be discussed and mitigations for future projects will be documented for future use. This meeting shall be attended by the ship's officers, applicable crew, the Chief Scientist, and members of the scientific party and is normally arranged by the Operations Officer and Chief Scientist.
- D. Project Evaluation Report

Within seven days of the completion of the project, a Customer Satisfaction Survey is to be completed by the Chief Scientist. The form is available at <u>http://www.omao.noaa.gov/fleeteval.html</u> and provides a "Submit" button at the end of the form. Submitted form data is deposited into a spreadsheet used by OMAO management to analyze the information. Though the complete form is not shared with the ships', specific concerns and praises are followed up on while not divulging the identity of the evaluator.

VIII. Miscellaneous

A. Meals and Berthing

The ship will provide meals for the scientists listed above. Meals will be served 3 times daily beginning one hour before scheduled departure, extending throughout the project, and ending two

hours after the termination of the project. Since the watch schedule is split between day and night, the night watch may often miss daytime meals and will require adequate food and beverages (for example a variety of sandwich items, cheeses, fruit, milk, juices) during what are not typically meal hours. Special dietary requirements for scientific participants will be made available to the ship's command at least seven days prior to the project.

Berthing requirements, including number and gender of the scientific party, will be provided to the ship by the Chief Scientist. The Chief Scientist and Commanding Officer will work together on a detailed berthing plan to accommodate the gender mix of the scientific party taking into consideration the current make-up of the ship's complement. The Chief Scientist is responsible for ensuring the scientific berthing spaces are left in the condition in which they were received; for stripping bedding and linen return; and for the return of any room keys which were issued. The Chief Scientist is also responsible for the cleanliness of the laboratory spaces and the storage areas utilized by the scientific party, both during the project and at its conclusion prior to departing the ship.

All NOAA scientists will have proper travel orders when assigned to any NOAA ship. The Chief Scientist will ensure that all non NOAA or non Federal scientists aboard also have proper orders. It is the responsibility of the Chief Scientist to ensure that the entire scientific party has a mechanism in place to provide lodging and food and to be reimbursed for these costs in the event that the ship becomes uninhabitable and/or the galley is closed during any part of the scheduled project.

All persons boarding NOAA vessels give implied consent to comply with all safety and security policies and regulations which are administered by the Commanding Officer. All spaces and equipment on the vessel are subject to inspection or search at any time. All personnel must comply with OMAO's Drug and Alcohol Policy dated May 17, 2000 which forbids the possession and/or use of illegal drugs and alcohol aboard NOAA Vessels.

B. Medical Forms and Emergency Contacts

The NOAA Health Services Questionnaire (NHSQ, NF 57-10-01 (3-14)) must be completed in advance by each participating scientist. The NHSQ can be obtained from the Chief Scientist or the NOAA website <u>http://www.corporateservices.noaa.gov/noaaforms/eforms/nf57-10-01.pdf</u>.

All NHSQs submitted after March 1, 2014 must be accompanied by <u>NOAA Form (NF) 57-10-02</u> - Tuberculosis Screening Document in compliance with <u>OMAO Policy 1008</u> (Tuberculosis Protection Program).

The completed forms should be sent to the Regional Director of Health Services at the applicable Marine Operations Center. The NHSQ and Tuberculosis Screening Document should reach the Health Services Office no later than 4 weeks prior to the start of the project to allow time for the participant to obtain and submit additional information should health services require it, before clearance to sail can be granted. Please contact MOC Health Services with any questions regarding eligibility or completion of either form. Ensure to fully complete each form and

indicate the ship or ships the participant will be sailing on. The participant will receive an email notice when medically cleared to sail if a legible email address is provided on the NHSQ.

The participant can mail, fax, or email the forms to the contact information below. Participants should take precautions to protect their Personally Identifiable Information (PII) and medical information and ensure all correspondence adheres to DOC guidance (http://ocio.os.doc.gov/ITPolicyandPrograms/IT_Privacy/PROD01_008240).

The only secure email process approved by NOAA is <u>Accellion Secure File Transfer</u> which requires the sender to setup an account. <u>Accellion's Web Users Guide</u> is a valuable aid in using this service, however to reduce cost the DOC contract doesn't provide for automatically issuing full functioning accounts. To receive access to a "Send Tab", after your Accellion account has been established send an email from the associated email account to accellionAlerts@doc.gov requesting access to the "Send Tab" function. They will notify you via email usually within 1 business day of your approval. The 'Send Tab" function will be accessible for 30 days.

Contact information:

Regional Director of Health Services Marine Operations Center – Pacific 2002 SE Marine Science Dr. Newport, OR 97365 Telephone 541-867-8822 Fax 541-867-8856 Email MOP.Health-Services@noaa.gov

Prior to departure, the Chief Scientist must provide an electronic listing of emergency contacts to the Executive Officer for all members of the scientific party, with the following information: contact name, address, relationship to member, and telephone number.

C. Shipboard Safety

Hard hats are required when working with suspended loads. Work vests are required when working near open railings and during small boat launch and recovery operations. Hard hats and work vests will be provided by the ship when required.

Wearing open-toed footwear or shoes that do not completely enclose the foot (such as sandals or clogs) outside of private berthing areas is not permitted. At the discretion of the ship CO, safety shoes (i.e. steel or composite toe protection) may be required to participate in any work dealing with suspended loads, including CTD deployment and recovery. The ship does not provide safety-toed shoes/boots. The ship's Operations Officer should be consulted by the Chief Scientist to ensure members of the scientific party report aboard with the proper attire.

D. Communications

A progress report on operations prepared by the Chief Scientist may be relayed to the program office. Sometimes it is necessary for the Chief Scientist to communicate with another vessel, aircraft, or shore facility. Through various means of communications, the ship can usually

accommodate the Chief Scientist. Special radio voice communications requirements should be listed in the project instructions. The ship's primary means of communication with the Marine Operations Center is via email and the Very Small Aperture Terminal (VSAT) link. Standard VSAT bandwidth at 128kbs is shared by all vessels staff and the science team at no charge. Increased bandwidth in 30 day increments is available on the VSAT systems at increased cost to the scientific party. If increased bandwidth is being considered, program accounting is required and it must be arranged through the ship's Commanding Officer at least 30 days in advance.

E. IT Security

Any computer that will be hooked into the ship's network must comply with the *OMAO Fleet IT Security Policy* 1.1 (November 4, 2005) prior to establishing a direct connection to the NOAA WAN. Requirements include, but are not limited to:

(1) Installation of the latest virus definition (.DAT) file on all systems and performance of a virus scan on each system.

- (2) Installation of the latest critical operating system security patches.
- (3) No external public Internet Service Provider (ISP) connections.

Completion of the above requirements prior to boarding the ship is required.

Non-NOAA personnel using the ship's computers or connecting their own computers to the ship's network must complete NOAA's IT Security Awareness Course within 3 days of embarking.

F. Foreign National Guests Access to OMAO Facilities and Platforms

Foreign National access to the NOAA ship or Federal Facilities is not required for this project.

VIII. Appendices

- 1. Map of study area.
- 2. Station/Waypoint List (coordinates in Latitude, Longitude: degree-minutes).
- 3. Mooring schematics
- 4. Chemical inventory and spill response.

	Dec. Dec. <
BAS BC TAC TAC <thtac< th=""> TAC TAC <thtac< th=""> <thtac< th=""> <thtac< th=""></thtac<></thtac<></thtac<></thtac<>	No.No
	B F
A.S. A.S. A.S. A.S. A.S. A.S. A.S. A.S. A.S.	b n No. C.C. No. No. No. No. No
CareC	b b
costno<	baseb
Ans.Desc. <thdesc.< th="">D</thdesc.<>	box p. box box p. box
cost71<	
	box -1.3 -5.00 -1.00
no <th< td=""><td>no<th< td=""></th<></td></th<>	no <th< td=""></th<>
Acs.PBottomPDDD	AskPP<
BDD <th< td=""><td>BOD C Distance <thdistance< th=""> <thdistance<< td=""></thdistance<<></thdistance<></td></th<>	BOD C Distance Distance <thdistance< th=""> <thdistance<< td=""></thdistance<<></thdistance<>
Bit Bit <td></td>	
D D<	constrainedconstrain
BD BD BD C SAM APA CED <	B0 B01.1 C JAMD J
n.n. monthN. 2000N. 2012N. 2000N. 2012N. 2000N. 2000DD	b.b. B.
no.Solal,<	BCDCC1DCC1DCC1DCC2DCC1DCC2DCC
bit bit <td>b)</td>	b)
BookeeBook	barborMod <t< td=""></t<>
AnshoreAnshoreBoundary	atacananaababarbasestrep16450450450474721.5000 J.S.56607-146.06075620.0-164.00 Longettee Mooring7.1021.5000 J.S.56.607-146.06075620.0-164.00 Longettee Mooring7.1021.5000 J.S.56.607-146.06075620.0-164.00 Longettee Mooring7.1021.5000 J.S.56.607-146.06075620.0-164.00 Longettee Mooring7.1021.5000 J.S.56.507-146.00757.1056.507-164.00 Longettee Mooring7.1021.5000 J.S.57.507-146.5185715.60-164.00 Longettee Mooring7.1021.5000 J.S.57.507-145.5185715.70-164.00 Longettee Mooring7.1021.5000 J.S.7.5020 J.S.15.5027.157-164.02 Longettee Mooring7.1021.5000 J.S.7.5200 J.S.15.5027.157-164.02 Longettee Mooring7.1021.5000 J.S.7.5200 J.S.15.5227.157-164.02 Longettee Mooring7.1021.5000 J.S.7.5200 J.S.15.5227.157-164.02 Longettee Mooring7.1021.5000 J.S.7.5200 J.S.15.5227.107.107.107.1021.5000 J.S.7.5200 J.S.15.5227.107.107.1021.5000 J.S.7.5200 J.S.15.527.107.107.1021.5000 J.S.7.5200 J.S.<
D225050-X 5.566 -140009 C 2 2.20 1.40 2.10 1.20	22,2585.04. 55.666 -16.06 25.0 120
Display<	Z)MBD-2J.B.MOP<
mature mature<	antara omegane omegane <th< td=""></th<>
barbon Optimization Control Contro Control Control	babb model
behumaNo.42.Sol.92.21.61.97.9656.51.60.91.601.60.91.601.601.7070behumaNo.43.S.201671.61.97.051.601.601.601.601.607070behumaNo.44.S.201671.61.97.051.601.601.601.601.607070behumaNo.44.S.201671.61.29.207.11.531.601.501.7070behumaNo.44.S.201671.62.29.307.11.501.601.50.57.0070behumaNo.44.S.7.90071.67.98.777.01.601.50.57.0070behumaNo.44S.7.90071.67.98.777.11.601.30.57.0070behumaNo.44S.7.90071.67.99.771.1.51.601.30.57.0070behumaNo.44S.7.90071.67.99.771.1.51.601.30.57.0070behumaNo.44S.7.90071.69.92.771.50.901.605.5.5.0070700behumaNo.44S.7.90071.69.92.771.50.901.605.5.5.5.0070700behumaNo.44S.7.90071.69.92.771.601.601.60700700behumaNo.44S.7.90071.69.92.771.601.601.60700700behumaNo.44S.7.90071.70.921.601.601.601.70.70700behum	ball 26M-2.Sp Sol 27Sp
number number<	number number<
beskyrm NWR T 197 6.4 7.5 1.65 1.5<	Destrict PMAC P 1 D20
outed and any and any	openum openum<
number number<	
behthymPMM12SP 4200SP 4250SP 42HeidMarkSP 4200NPbehthymPMM14SP 4988167 3471SP 7P.3160Mark ST CTU/ONT1behthymPMM14SP 4988167 3471SP 7P.30160Mark ST CTU/ONT2behthymPMM14SP 4988167 3481SP 100PM 2000T2T2behthymPMM17SP 2203166 3687T111.308160SP 2000T2behthymPM 200SP 2213167 381817SP 318168SP 1000T2T2behthymPM 200SP 2818168 4891T7SP 318168SP 2000T2T2T1behthymPM 200SP 2818168 4891T7SP 318168SP 2000T2T2T1T0behthymPM 200SP 2818168 4891T7SP 318168SP 2000T2T2T1T0behthymPM 200SP 2818168 4891T7SP 818168SP 2000T2T2T2T1T2T2T1T2T2T1T2T2T1T2T2T1T2T2T2T1T2T	petholmresultres
waxatalo math 9.4.48 10.2.2.4.17 7 8.8.8 -1.8. 0.0.2.2.2.17 7 7 8.8.9 -1.9 0.0.2.2.2.17 7 <th7< th=""> <th7< th=""></th7<></th7<>	unsame no. y / 488 12-1428 75 8.5.8 3.05 700/00 70 bash Tran YMM1 S / 3000 Y 10.75 20.300 Y 10.700 Y bash Tran YMM1 S / 3000 10.300 10.300 Y 10.700 Y bash Tran YMM1 S / 2020 10.6000 10.30 10.7000 Y bash Tran YMM1 S / 2020 10.6000 10.30 10.7000 Y bash Tran YMM1 S / 2020 10.6000 10.0000 Y 10.0000 Y bash Tran YMM2 S / 2020 10.6000 10.0000 Y 10.00000 Y 10.00000 Y 10.00000 Y 10.00000 Y 10.000000 Y 10.000000 Y 10.000000 Y 10.00000000 Y
Desting and the second secon	Death Tum TMULE 53,5007 107.9821 10 20170 107.92<
abstrymrpN11 <thrpn11< th="">rpN11<</thrpn11<>	absh.bmPMM15SP.SM17P1.F.083SPBO.702N.10SP.SC TUP/ONP2absh.bmPM13SP.S213147.987SP.S131482.202 TUP/ONP7absh.bmPM14SP.S213147.987SP.S131482.202 TUP/ONP7absh.bmPM14SP.S213146.962SP.S1281482.20 TUP/ONP7absh.bmM44SP.S13146.962SP.S128148SP.S205146.962P7absh.bmM44SP.S13146.962SP.S206148SP.S2052.00100P7absh.bmM44SP.S13146.962SP.S206148SP.S20514015.35S.CU/ON70absh.bmM44SP.S200116.921SP.S20614015.35S.CU/ON70absh.bmM44SP.S200110.921SP.S2001701712absh.bmM44SP.S200110.921SP.S20017012absh.bmM44SP.S200110.921SP.S20017012absh.bmM44SP.S200110.921147140147147absh.bmM44SP.S200110.921147140147147147absh.bmM44SP.S200110.921147140147147147147absh.bmM44SP.S200110.921147140142.92170172absh.bmM44SP.S200110.921
number number<	 Lamine M. M. 1999. J. J. 1999. J. 1999. <l< td=""></l<>
bath Ym YM18 7.324 19.812 7 1.47 1-86 382. CTD 7 2 bath Ym YM44 7.765 16.642 7 8.52 108 1.22 CTD/R0H 72 bath Ym YM44 7.765 16.6462 7 8.52 108 1.20 Stotucke Monite Monite 70 bath Ym YM42 7.7833 10.6890 7 8.98 1.08 2.20 Stotucke Monite Monite 70 bath Ym YM42 7.7333 10.6890 7 8.98 1.08 2.01 Stotucke Monite 70 bath Ym YM43 7.2328 16.201 7 5.501 5.001 CO 70 bath Ym YM44 5.002 10.021 Stotucke Monite 71 11.402 CO 71 11.402 CO 71 1.102 CO 71 1.001 CO 71 <t< td=""><td>Dehmit Mar TONUS To Table Table To Table <thtable< th=""> Table Table</thtable<></td></t<>	Dehmit Mar TONUS To Table Table To Table Table <thtable< th=""> Table Table</thtable<>
Josephane Josephane <thjosephane< th=""> <thjosephane< th=""> <th< td=""><td>material material j j j j j j j j j j j j j j j j j j j</td></th<></thjosephane<></thjosephane<>	material material j j j j j j j j j j j j j j j j j j j
My dis-1 7 3785 7 3885 7 7 32.0 7 48 222 Suburdice Moning 7 100 MobiLY MobiLY 7 404 7 3830 166.8930 7 7 26.00 32.57 Suburdice Moning 7 700 MobiLY MobiLY 7 404 7 3830 166.8930 7 49.88 188 53.27 CTp/00H 82 MobiLY MobiLY MobiLY 149 13.27 CTp/00H 82 17 19.98 19.97 19.97 17 10.97 11 10.97 11.97 10.97 10.97 19.98 10.97 19.98 17.97 11.97 10.97 10.97 10.97 10.97 10.97 11.10.97 <	Number 57 385 118822 57 323 128 <
NY 446.4.Y. 43316.8.92Y. 4501.81.2.7. Suburface MornigN.0.0Debt/YorYM21/V4Y.733316.8.920Y. 4931.83.5.3 C/WT5Y.Debt/YorYM21/V4Y.733316.8.920Y. 4931.83.5.3 C/WT5Y.Debt/YorM44S.0.6201.8.7.20Y.Y.1.8.3.2 C/WT5Y.Debt/YorM44S.0.6211.6.7.27Y.Y.Y.Y.Y.Debt/YorM44S.0.6211.6.7.27Y.Y.Y.Y.Y.Debt/YorYM26S.2.8.4451.70.288Y.Y.Y.Y.Y.Y.Debt/YorYM26S.2.84451.70.287Y.	Markab 9.7.438 19.4893 9.7 9.50 1.68 9.27 Suburkes Moning 0.00 Math/Markab 9.7438 1.888200 9.7 9.88 9.83 2.57 Suburkes Moning 0.00 Math/Markab 9.73438 1.888200 7 9.88 9.83 3.21 ChiPolon 72 Math/Markab 9.4043 5.4021 1.85 1.85 1.97 1.64 3.03 ChiPolon 72 Math/Markab 8.44 8.402 1.90 9.05 1.90
 Landard M. P.M.L. M. S. A. S. S.	Landsmin
beshtym MM-W 57.9280 199.322 57.868 1-169 10.322 CTUYON 68 beshtym TMA24 58.0622 1.58.2722 58 3.97 1.68 4.35.7 CTUYON 71 beshtym TMA24 58.04217 1.68.9727 58 2.502 1.69 4.35.5 CTUYON 72 beshtym TMA24 58.04217 1.69.040 72 1.69.040 72 beshtym TMA24 58.0423 1.70.230 58 56.090 1.70 1.53.0170 72 beshtym TMA33 59.0433 1.70.2307 58 56.998 1.70 1.53.81 CTUYON 72 beshtym TMA33 59.253.3 1.70.113 59 2.51.20 71 2.55.25 CTU 71 beshtym TMA35 59.253.3 1.70.2028 59 2.21.41 71 2.55.25 CTUYON 71 beshtym TMA35 59.253.3 1.70.2028 59 54.20 1.71 2.55.25 CTUYON 7	beht/Tm MAW 57.930 19.32 <t< td=""></t<>
bath?m NNA23 57.9088 1.95.013 57.45.3 1.68 3.52.716/00. 71 bath?m NNA25 58.14.017 1.68 4.52.716/00. 72 bath?m NNA25 58.14.017 1.68 4.52.716/00. 72 bath?m NNA25 58.14.017 1.68 4.52.71 1.70 4.53.0176/00. 72 bath?m NNA25 58.14.053 1.70 4.53.0176/00. 73 bath?m NNA22 58.74.33 1.70.22.387. 58.64.598 1.70 1.63.02 CTI/NON 73 bath?m NNA32 59.106.0 1.70.20.32 59.46.41.70 1.70 1.40.5 CTI/NON 68 bath?m NNA32 59.45.01 1.70.20.40 59 4.214 1.70 2.40.07 73 bath?m NNA3 59.45.01 1.70.20.40 59 4.214 1.70 2.40.07 73 bath?m NNA3 59.45.01 1.70.20.01 59 4.214 1.70 2.40.70 73 </td <td>balah?m NVA2 57.908 1.65.011 57.45.3 1.69 2.0.02 CTD/SON 71 abah?m NVA2 58.04217 1.68.0427 38 2.302 1.69 40.36 CTD/SON 72 abah?m TNVA2 58.04217 1.69.04277 38 2.302 1.69 40.36 CTD/SON 72 abah?m TNVA2 58.0453 1.70 1.53.02 CTD 74 abah?m TNVA2 58.065 1.70.02567 58 8.67.3 1.70 1.60.02 CTD 72 abah?m TNVA3 58.1060 1.70.2420 59 6.5.6 1.70 73 8.44586 1.70 1.63.96 CTD/SON 73 abah?m TNVA3 59.4567 1.70.906 59 1.70 74 3.44.57 CTD/SON 74 abah?m TNVA3 59.4567 1.70.906 59 1.50 710 52.5 CTD 71 abah?m TNVA3 59.4567 1.70.906 59 1.50 710 52.5 CTD</td>	balah?m NVA2 57.908 1.65.011 57.45.3 1.69 2.0.02 CTD/SON 71 abah?m NVA2 58.04217 1.68.0427 38 2.302 1.69 40.36 CTD/SON 72 abah?m TNVA2 58.04217 1.69.04277 38 2.302 1.69 40.36 CTD/SON 72 abah?m TNVA2 58.0453 1.70 1.53.02 CTD 74 abah?m TNVA2 58.065 1.70.02567 58 8.67.3 1.70 1.60.02 CTD 72 abah?m TNVA3 58.1060 1.70.2420 59 6.5.6 1.70 73 8.44586 1.70 1.63.96 CTD/SON 73 abah?m TNVA3 59.4567 1.70.906 59 1.70 74 3.44.57 CTD/SON 74 abah?m TNVA3 59.4567 1.70.906 59 1.50 710 52.5 CTD 71 abah?m TNVA3 59.4567 1.70.906 59 1.50 710 52.5 CTD
m.m. about job (Ab) j	
obsh17/m 700425 \$2.31/17 1.09.01817 \$2.6002 CTD 72 obsh17/m 700425 \$2.4555 710 1.53 710 1.53 710 73 obsh17/m 700428 \$6.616 170.2757 \$8 46.4588 170 1.6.53 CTM/ON 72 obsh17/m 70043 \$5.47333 170.2023 \$5.688 170 1.5.632 CTM/ON 70 obsh17/m 70043 \$5.47333 170.2035 \$5.588 170 1.5.632 CTM/ON 70 obsh17/m 70043 \$5.4587 1.70.2046 \$9 2.102 170 3.9487 CTM/ON 71 obsh17/m 70043 \$5.4587 1.71.2046 \$9 2.102 1.70 2.54 CTM/ON 72 obsh17/m 70043 \$5.711.14860 \$9 4.214 1.71 2.54 Solutrike Mooring 70 obsh17/m 70043 \$5.712.14267 \$9 5.468 1.71 4.255 Solusynite Mooring 70	bath/Tom TOWAS Sal.47/17 1.09.1817 Sal. Sal.202 TOP S.C.TOPSON TOP bath/Tom TOWAS Sal.455 1.70.103867 Sal.455 1.70 1.1.402 CTD 7.7 bath/Tom TOWAS Sal.455 1.70.11257 Sal.455 1.70 1.55.20 CTD/SON 7.2 bath/Tom TOWAS Sal.70.127.73 Sal.46.33 1.70.127.83 Sal.70.127.71 1.70 2.6.70 CTD/SON 7.8 bath/Tom TOWAS Sal.201.70.117.71 Sal.46.33 1.70.157.83 5.9.17 2.70 CTD/SON 7.7 bath/Tom TOWAS Sal.202.71 7.70.700 Sal.202.71 2.2.70 CTD/SON 7.7 bath/Tom TOWAS Sal.202.71 7.70.700 Sal.202.71 2.2.50 CTD 7.1 bath/Tom TOWAS Sal.203.717.11.400 Sal.202.71 1.71.42.53.202.70 7.7 2.5.200 7.7 7.7 2.5.902.71 7.7 2.5.902.71 7.7 7.7 2.5.902.71 7.7 7.7 2.5.902.71
user.nt.om JBK.4201 1.70.1024 5.8 1.6.22 1.70 5.57 CT6/PRON 72 obsth?m TMA23 S.8.165 1.70.275 S8 36.39 1.70 1.14.33 CT7/PRON 73 obsth?m TMA23 S.8.165 1.70.275 S8 36.39 1.70 1.45.3 CT7/PRON 73 obsth?m TMM31 S.9.100 1.70.242 S9 6.36 1.70 1.43.5 CT0/PRON 68 obsth?m TMM35 S.9.3537 1.70.6538 S9 2.01.18 1.70 3.9.468 CT0 71 obsth?m TMM35 S.9.357 1.70.2638 S9 2.5.2 CT0 73 0.5.3 CT0 71 obsth?m TMM45 S.9.373 1.70.2667 S9 5.6.07 71.4 2.5.3 CT0 71 2.4.275 S9.5.07 72.4 2.7.5 Sysburface Mooring 70 obsth?m TMM45 S.9.303 1.71.11883 S9 3.5.8 1.72 1.5.0 CT3/PON 71 2.4.25.5 CT0 <	maximum star.box bit.box 51.5 TCD/foll 72 babth/Tm TM22 54.615 170.155.7 58 66.30 170 11.15.02 CTD 74 babth/Tm TM22 52.710.155.7 58 66.30 170 16.33 CTD/BON 73 babth/Tm TM22 52.81 170 14.55 CTD 68 babth/Tm TM24 52.82 170 14.55 CTD 68 babth/Tm TM24 52.82 170 54.56 CTD/BON 73 babth/Tm TM24 52.857.1 170.956.7 170.956.7 170.956.7 170.956.7 babth/Tm TM35 57.553 170.196.7 9 42.23 171 42.35 Stort/Bon (TD 73 babth/Tm TM35 59.758.9 170.70667 9 54.80 171 42.35 Stort/Bon (TD 70 57.148.29 A 59.898 172.1388 59 54.80 171 42.55 Stort/Bon (TD 70 57.148.29 A 59.898
Data Tay Tay Tay Tay Tay Tay Tay Tay Tay Ta	authom TAULES TAULES<
bath/bit 700/29 58.74743 1/10.29307 58 46.698 1.70 1/5.602 77 bath/bit 70043 59.1000 1.70.2492 59 6.56 1.70 1.458 77.0 77.0 bath/bit 700431 59.3533 1.70.0583 59 20.1188 1.70 39.3498 CTD 1.70 77.10	bashTröm 700/39 58.7433 110.29307 58 46.639 -170 15.639 CTD/800 70 bashTröm 70043 59.1060 170.1492 59 6.36 -170 14.95 CTD 68 bashTröm 70043 59.3533 -170.138.25 717 1.495 CTD 68 bashTröm 70043 59.35567 -170.039.358 20.1136 -170 59.35 CTD/800N 72 bashTröm 70043 59.373 -171.4490 59 42.44 -171 59.36 CTD/800N 74 bashTröm 70045 59.773 -171.4490 59 42.45 -171 42.55 Subsurface Mooring 70 bashTröm 700457 59.773 -171.1495 59 53.88 -172 155.0 CTD/80N 72 bashTröm Ms-4 59.898 -171.118 59 53.28 -171 44.55 170 44.55 170 170 25.5 171.39 59 53.48 -172 150.000 170
Landard Landard <thlandard< th=""> <thlandard< th=""> <thl< td=""><td>Landard Mark Landard Mark So Bod 20 Landard Mark Landard Mark</td></thl<></thlandard<></thlandard<>	Landard Mark Landard Mark So Bod 20 Landard Mark
obsh170 70482 59.2462 1.70.117 59 1.47 7.70 2.4.70 CTP/R0N 70 obsh170 70443 59.353 1.70.505 59 20.1402 1.70 55.36 CTP/R0N 70 obsh170 70443 59.352 1.71.1448 59 42.14 1.71 25.88 CTP/R0N 72 obsh170 70445 59.773 1.71.4490 59 4.64 1.71 25.88 CTP/R0N 70 obsh170 70445 59.373 1.71.1490 59 4.64 1.71 25.88 CTP/R0N 70 obsh170 70445 59.313 1.71.708667 59 54.58 1.71 4.23.5 Usentrace Mooring 70 obsh170 70445 59.380 1.71.710 59 55.22 1.71 4.26.5 CTP/R0N 70 obsh170 70444 60.372 1.71.510 59 54.60 1.72 2.51.1 CTP 70 obsh170 70444 60.372 1.73.5167 60 52.5 1	behthom 70842 59.2462 1.70.117 59 1.47 7.07 2.470 CTP/RON 68 behthom 70844 59.331 1.70.558 59 21.162 1.70 5.4.36 CTP/RON 70 behthom 70845 59.931 1.71.1480 59 22.142 1.71 2.3.46 CTP/RON 72 behthom 70845 59.7073 1.71.1480 59 4.6.46 1.71 2.5.36 CTD 73 3.7.7 behthom 70845 59.773 1.71.24807 59 5.5.8 1.71 1.5.90 CTD/RON 70 behthom 70845 59.8380 1.71.120 59 5.5.8 1.71 5.5.0 CTD/RON 70 behthom 70.8385 1.71.120 59 5.5.2 1.71 4.6.6 CTD/RON 70 behthom 70.8385 1.71.120 59 5.5.2 1.71 4.5.6 CTD/RON 70 behthom 70.8380 1.71.120 59 5.4.6 1.72 5.1.107 70
countant	Jumman Jumman <thjumman< th=""> <thjumman< th=""> <thjumman< t<="" td=""></thjumman<></thjumman<></thjumman<>
obsh1700 70435 59.5953 171.5208 19 1.872 171 55.25 717 174 obsh1700 70436 59.7155 171.13883 59 42.34 171 8.3985 710000 72 obsh1700 704375 57.744 171.4495 59 46.46 171 25.902 70 55.7455.54 59.9178 171.71265 59 55.07 171 15.0 70 obsh1700 M5-F 59.8890 171.7110 59 53.28 171 12.0002 707(PON 73 obsh1700 70044 59.8820 171.7110 59 53.22 171 12.66 61.000 70 obsh1700 70044 59.9115 172.4512 59 54.69 172 2.61 70 60 172 0.36 710 60 61.30 172 0.36 710 70 60 61.30 172 0.35 707 70 70 70 70 <td>abalt 70 70.52 71.0208 72 72 72 52.52 CTD 74 abalt 70 70.55 57.72 71.1883 59 42.14 -171 8.3988 CTD/CON 74 abalt 70m 70.73 -171.4887 59 45.64 -171 42.795 bluburger Norm 70 by14155A 59.333 171.71265 59 55.07 -171 42.55 bluburger Norm 70 obult 70m MS-E 59.8890 171.2165 59 53.88 -171 42.55 bluburger Norm 70 obult 70m 70.8895 59.8820 -171.7110 59 53.52 -171 42.66 Calver Norm 70 obult 70m 70.8895 59.8820 -171.7110 59 53.52 -171 42.66 Calver Norm 70 obult 70m 70.44 60.037 -173.005 60 2.30 -172 0.30 CT0/10N 70 obult 70m 70.44 50.0</td>	abalt 70 70.52 71.0208 72 72 72 52.52 CTD 74 abalt 70 70.55 57.72 71.1883 59 42.14 -171 8.3988 CTD/CON 74 abalt 70m 70.73 -171.4887 59 45.64 -171 42.795 bluburger Norm 70 by14155A 59.333 171.71265 59 55.07 -171 42.55 bluburger Norm 70 obult 70m MS-E 59.8890 171.2165 59 53.88 -171 42.55 bluburger Norm 70 obult 70m 70.8895 59.8820 -171.7110 59 53.52 -171 42.66 Calver Norm 70 obult 70m 70.8895 59.8820 -171.7110 59 53.52 -171 42.66 Calver Norm 70 obult 70m 70.44 60.037 -173.005 60 2.30 -172 0.30 CT0/10N 70 obult 70m 70.44 50.0
obsh1700 NDS-S 57.702 -171.4840 59 42.14 -171 479.423 -171 450.712 obsh1700 70.M37 59.774 -171.4467 59 46.46 -171 25.982 CTD 73 57.1455.5A 59.5713 -171.14667 59 53.88 -171 42.753 Subsurface Mooring 70 57.1455.5A 59.5913 171.708.667 59 53.88 -171 50.50 CT/V00N 73 obsh1700 70.381/M5 59.8820 -171.7110 59 53.52 -171 24.66 CT/V00N 70 obsh1700 70.381/M5 59.8820 -171.7110 59 53.52 -171 24.66 CT/V00N 70 obsh1700 70.041 59.9820 -171.7110 59 53.52 -171 24.66 CT/V00N 70 obsh1700 70.043 60.0750 -172.0401 60 51.10 -171 24.05 CT/V00N 70 obsh1700 70.043 60.735 -172.0401 61.400 -173.300 </td <td>bath 700 MS-S 97.023 171.4840 99 42.14 171 29.04 CTV/BON 74 bath 700 70M37 55.7734 171.44667 59 46.46 171 28.398 CTV/BON 73 Sty1485-SA 59.9133 171.7086667 59 54.80 171 42.52 Subsurface Mooring 70 bath 700 MS-4 59.9388 171.708667 59 53.88 170 42.56 Subsurface Mooring 70 bath 700 MS-4 59.9880 -171.7110 59 53.52 -171 42.66 170 70 bath 700 70040 59.8800 -171.7110 59 53.52 -171 42.66 171 42.61 CTD(MO 70 bath 700 70040 59.8800 -171.7110 59 53.22 -171 42.65 CTD(MO 70 50.00 70 50.00 70 50.00 70 50.00 70 50.00 70 50.00 70 50.00</td>	bath 700 MS-S 97.023 171.4840 99 42.14 171 29.04 CTV/BON 74 bath 700 70M37 55.7734 171.44667 59 46.46 171 28.398 CTV/BON 73 Sty1485-SA 59.9133 171.7086667 59 54.80 171 42.52 Subsurface Mooring 70 bath 700 MS-4 59.9388 171.708667 59 53.88 170 42.56 Subsurface Mooring 70 bath 700 MS-4 59.9880 -171.7110 59 53.52 -171 42.66 170 70 bath 700 70040 59.8800 -171.7110 59 53.52 -171 42.66 171 42.61 CTD(MO 70 bath 700 70040 59.8800 -171.7110 59 53.22 -171 42.65 CTD(MO 70 50.00 70 50.00 70 50.00 70 50.00 70 50.00 70 50.00 70 50.00
Link Link <thlink< th=""> Link Link <thl< td=""><td>Link Link <thlink< th=""> Link Link <thl< td=""></thl<></thlink<></td></thl<></thlink<>	Link Link <thlink< th=""> Link Link <thl< td=""></thl<></thlink<>
Stylates-SA 99 9138 171.71265 59 55.00 171 42.25 Suburface Mooring 70 obath70m MS-E 59.888 171.2583 59 53.88 171 15.50 T/70/RON 70 obath70m TO-M38/MS 59.8898 172.110 59 53.52 171 42.66 32.01/PCN 70 obath70m TO-M38/MS 59.8920 177.1710 59 53.52 171 42.66 71.0700 70 obath70m TOM40 59.9122 172.4152 59 54.69 172 44.7702 70.070 70 obath70m TOM42 60.0372 172.0005 60 2.33 173 33.00 TD/70 70 obath70m TOM43 60.1057 173.3167 60 43.31 173 38.37 713 83.37 713 83.37 713 84.31 173 84.34 713 84.34 713 84.34 713 84.34 713 84.3	Sri Alass-SA 59 9178 -17.12265 59 55.07 -17 42.75 subsurface Mooring 70 obalt 70m MS-E 53.888 171.2583 39 53.88 171 15.50 CT0/F0M 70 obalt 70m MS-E 53.888 171 15.50 CT0/F0M 70 obalt 70m 70038/ 53.880 171 14.266 Stack MOOR 70 obalt 70m 70038/ 53.8820 171.7110 59 53.52 171 42.66 Stack MOOR 70 obalt 70m 70040 59.9115 171.24321 59 54.69 172 42.61 CT0/F0M 70 obalt 70m 70041 59.9212 172.31527 60 6.33 173 13.03 CTD 70 obalt 70m 70044 60.212 173.3167 60 6.433 173 35.02 CT0/F0M 70 obalt 70m 70044 60.223 173.359 60 34.33 173 35.02 CT0/F0M 70 obalt 70m 70044 61.027
Joy - Ander Mark 2001 30 2011 30 2011 30 2011 30 70 obath70m M5-K 59.8880 172.16667 59 53.88 172 10.000 21(7)/80N 73 obath70m 70.38/M5 59.8920 177.1710 59 53.52 171 42.66 3 CeWF5 70 obath70m 70.440 59.9720 172.7101 59 54.60 172 26.11 CTD 74 obath70m 70.441 59.9722 172.74617 59 58.60 172 0.30 CTD 70 obath70m 70.444 60.0751 173.2517 60 6.33 173 33.30 CTD 70 obath70m 70.444 60.2738 173.6480 60 44.33 173 38.80 CTD/80N 72 obath70m 70.446 60.5738 173.2427 61 44.33 173 49.76 CTD/80N 71 obath70m 70.448 61.0567 173.2427 61 44.33 173 43.72 CTD/80N 71	bigstand 5-1 5-12.53 5
obath70m M5.W 59.888 1-72.6667 59 53.82 1-71 10.000 True 73 obath70m 70m38M5 59.8920 1-717.110 59 53.52 1-71 42.66 720 73 obath70m 70m38M5 59.8920 1-717.110 59 53.52 1-71 42.66 720 73 obath70m 70m40 59.9120 1-77.4157 55 56.66 1-72 30.30 CTD/SON 70 obath70m 70M42 60.0327 -173.3167 60 6.03 1-73 31.30 CTD/SON 70 obath70m 70M44 60.1378 -173.3675 60 24.5 1-73 35.302 CTD/SON 70 obath70m 70M44 60.1373 1.73.6480 60 44.31 1-73 49.45 CTD 73 obath70m 70M48 61.0662 -173.3223 61 34.44 1-73 44.45 CTD 73 obath70m 70M50 61.2484 -173.32427 <td< td=""><td>babit 700 N5.W 59.888 -17.1710 59 53.82 -17.1 20.002 CTV/CON 72 babit 700 70038M/5 55.8820 -17.7.710 59 53.52 -17.1 42.65 CAUNTS 70 babit 700 70041 55.915 -17.7.710 59 55.69 -17.2 42.10 CTU 70 babit 700 70041 60.0750 -17.2 43.03 CTU 70 70 babit 700 70041 60.0750 -17.2 50.00 CTU/BON 70 70 babit 700 70044 60.257 -17.3.517 60 33.31 -17.3 33.30 CTD 70 babit 700 70045 60.4758 -17.3.517 60 34.31 -17.3 33.30 CTD 72 babit 700 70045 61.567 -17.3.517 60 34.31 -17.3 34.32 CTD/BON 71 babit 700 70047 61.3268 -17.3.7.228 <t< td=""></t<></td></td<>	babit 700 N5.W 59.888 -17.1710 59 53.82 -17.1 20.002 CTV/CON 72 babit 700 70038M/5 55.8820 -17.7.710 59 53.52 -17.1 42.65 CAUNTS 70 babit 700 70041 55.915 -17.7.710 59 55.69 -17.2 42.10 CTU 70 babit 700 70041 60.0750 -17.2 43.03 CTU 70 70 babit 700 70041 60.0750 -17.2 50.00 CTU/BON 70 70 babit 700 70044 60.257 -17.3.517 60 33.31 -17.3 33.30 CTD 70 babit 700 70045 60.4758 -17.3.517 60 34.31 -17.3 33.30 CTD 72 babit 700 70045 61.567 -17.3.517 60 34.31 -17.3 34.32 CTD/BON 71 babit 700 70047 61.3268 -17.3.7.228 <t< td=""></t<>
babh707 70m38/m5 59.8920 1.71.7110 59 53.52 1.71 42.66 71.426.61 71.426.61 70400 babh707 70M40 59.912 1.72.4352 59 54.60 1.72 24.11 70.00 60 babh707 70M41 59.912 1.72.4452 59 54.60 1.72 4.00 70.00 babh707 70M42 60.0370 1.72.000 60 2.33 1.73 3.00 CT0/80N 70 babh707 70M43 60.1251 1.73.3167 60 6.33 1.73 3.83.0 CT0/80N 72 babh707 70M46 60.738 1.73.6480 60 4.433 1.73 4.43 CT0 75 babh707 70M46 61.0502 1.73.742 61 4.44 1.73 4.43 CT0 75 babh707 70M45 61.622 1.74.042 61 5.60 1.74 2.25 CT0/80N 71 babh707	bahth70 70m38/M5 59.8820 171.7110 59 53.52 171 42.66 TO/NON bahth70 70m840 59.9115 172.4352 59 54.69 172 24.1712 70m bahth70m 70M41 59.912 172.4452 59 54.69 172 44.7702 70m bahth70m 70M42 60.0370 172.0006 60 2.23 173 30.30 CTD 70 baht70m 70M43 60.0157 173.3167 60 6.03 173 31.30 CTD 70 baht70m 70M44 60.2157 173.3167 60 4.33 173 38.37 CTD 68 baht70m 70M45 60.423 173.4438 61 4.44 173 4.45 CTD 72 baht70m 70M47 60.3788 173.7482 61 4.44 173 4.45 CTD 72 baht70m 70M43 61.6502 173.7422 61 4.64 173 4.12 CTD/80N 71 </td
c.m. c.m. <td< td=""><td>Lat. Lat. <thlat.< th=""> Lat. Lat. <thl< td=""></thl<></thlat.<></td></td<>	Lat. Lat. <thlat.< th=""> Lat. Lat. <thl< td=""></thl<></thlat.<>
obath 70m 70.441 59.97.2 -17.2 44.700 TOPRON 69 obath 70m 70.42 60.0372 -17.3065 60 2.23 -17.3 0.39 CTD 70 obath 70m 70.44 60.0375 -17.20000 60 4.50 -17.3 31.00 CTD/BON 70 obath 70m 70.44 60.217 -17.3 31.500 CTD/BON 70 obath 70m 70.445 60.2518 -17.3.5455 60 24.31 -17.3 38.83 CTD 68 obath 70m 70.446 60.0373 -17.3.3427 61 54.438 -17.3 48.9.76 CTD 72 obath 70m 70.445 61.0657 -17.3.3247 61 33.64 -17.3 48.9.76 CTD 72 obath 70m 70.456 61.02428 -17.3.7408 61 34.31 -17.4 45.66 CTD 71 obath 70m 70.455 61.9433 -17.4 35.22 CTD	obah170m 700441 59 58.2 172 44.7702 CTD/BON 69 obah170m MS-N 60.0372 173.0065 60 2.3 173 0.39 CTD/BON 70 obah170m MS-N 60.0375 173.0167 60 6.3 -173 11.00 CTD/BON 70 obah170m 70444 60.2151 173.3157 60 6.3 -173 31.30 CTD/BON 66 obah170m 70445 60.218 -173.648 60 44.31 -173 8.88 CTD/BON 72 obah170m 70445 60.0233 -173.4283 61 3.44 -173 48.27 CTD/BON 73 obah170m 70445 61.0267 -173.328.47 61 3.46 -173 4.4.17 CTD/BON 73 obah170m 70445 61.0502 -173.37408 61 3.46 -173 4.4.17 CTD/BON 73 obah170m 70455 61.2428
outent //m viewe4 600.750 -173.005 610 2.23 -173 0.39 CTD 70 obsth70m 70M43 60.1076 -173.3167 60 6.03 -173 13.00 CTD/80N 70 obsth70m 70M44 60.2151 -173.3167 60 6.03 -173 33.00 CTD/80N 70 obsth70m 70M46 60.2578 -173.6365 60 24.31 -173 83.83 CTD/80N 72 obsth70m 70M46 60.7388 -173.8287 60 54.438 -173 49.46 CTD/80N 72 obsth70m 70M42 61.0567 -173.8287 61 3.54 -173 44.9.76 CTD/80N 79 obsth70m 70M50 61.2498 -173.7122 61 3.61 -173 4.14.17 CTD/80N 72 obsth70m 70M53 61.1727 -173.8584 61 51.73 -174 4.15 5.66 CTD 71 obsth70m 70M53 61.49750 -174.4362 51.66	obsth?/Om View42 ebl1370 N/S-N 6.00/750 -173 0.39 CTD 70 obsth?/Om YOM43 60.00750 -172.2000 0.00 CTb/E0N 70 obsth?/Om YOM44 60.2157 -173.3517 60 6.03 -173 13.00 CTb/E0N 70 obsth?/Om YOM45 60.42517 -173.5435 60 2.55 -173 55.002 CTb/E0N 72 obsth?/Om YOM46 60.5718 -173.6435 60 4.433 -173 48.48 CTb/E0N 72 obsth?/Om YOM46 61.0577 -173.8247 60 54.438 -173 44.45 CTb 73 obsth?/Om YOM45 61.1249 -173.7428 61 14.99 -173 44.45 CTb 73 obsth?/Om YOM51 61.1407 -173.73720 61 35.61 -173 47.45 51.65 CTb/E0N 71 obsth?/Om YOM52 61.9570 -174.13462 65.60 -174 13.02 CTb/E0N 70
bash70m 70M43 60.1005 1.12 1.12 1.000 C1/9180N 70 obath70m 70M44 60.1005 1.73.3157 60 15.10 -1.73 31.30 CTD 70 obath70m 70M45 60.425 1.73.59167 60 25.5 1.73 35.30 CTD 68 obath70m 70M45 60.425 1.73.489 60 44.33 -1.73 38.83 CTD/80N 72 obath70m 70M44 60.0738 -1.73.4234 60 44.33 -1.73 49.46 CTD 75 obath70m 70M45 61.657 -1.73.4223 61 3.64 -1.73 42.147 CTD/80N 75 obath70m 70M53 61.4262 -1.73.3422 61 3.61 -1.73 42.147 CTD/80N 71 obath70m 70M53 61.4262 -1.74.412.43 5.66 CTD 71 obath70m 70M54 61.9802 -1.24 1.12.02	bath70m 70M43 60.1005 17.33 167 6 6.03 17.33 19.00 CTD/80N 70 obath70m 70M44 60.2517 17.33 15.00 17.33 31.30 CTD 70 obath70m 70M45 60.252 17.33 55.00 21.53 17.33 83.87 CTD 68 obath70m 70M44 60.0578 17.33.6480 60 44.33 17.33 89.88 CTD 81 obath70m 70M49 61.0567 17.33.8293 61 14.99 -17.3 44.45 CTD/80N 75 obath70m 70M50 61.2498 -17.3.73.22 61 33.61 -17.3 44.45 CTD/80N 70 obath70m 70M51 61.1407 -17.3.73.8547 61 55.60 -174 21.85 CTD/80N 70 obath70m 70M52 61.9750 -174.4587 61.550 -174 21.85 CTD/80N 70 obath70m 70
obalh 70m 70M44 60 A251 -173 S29167 60 15.10 -173 31.30 CTD 70 obalt 70m 70M46 60.5718 -173.6395 60 34.31 -173 38.83 CTD/80N 72 obalt 70m 70M47 60.39733 -173.48247 60 54.439 -173 49.76 CTJ/80N 73 obalt 70m 70M48 61.2986 -173.3247 61 14.99 -173 44.44 S CTD 75 obalt 70m 70M50 61.1298 -173.7122 61 36.61 -173 44.45 CTD 75 obalt 70m 70M51 61.1407 -173.7122 61 36.61 -174 51.28 CTJ/80N 71 obalt 70m 70M55 61.9433 -174.3642 61 56.60 -174 31.00 CTD/80N 70 obalt 70m 70M55 61.9433 -174.6812 62 1.09 -174 31.00 CTD/80N 70 obalt 70m 70M55 61.9433 -174.6812 62 1.00	obath 700 70M44 60 2512 .173 5212 60 15.10 .173 31.30 CTD 70 obath 700 70M46 60.425 .173 53167 60 35.5 .173 35.500 CTD/BON 65 obath 700 70M46 60.9073 .173.8447 60 54.439 .173 49.76 CTD/BON 79 obath 700 70M49 61.69073 .173.8427 61 3.94 .173 49.76 CTD/BON 79 obath 700 70M50 61.12498 .173.7426 61 4.49 .173 44.45 CTD 72 obath 700 70M51 61.1249 .173.7126 61 3.61 .173 71.23 CTD 70 72 obath 700 70M52 61.5602 .173.8427 61 3.61 .173 51.28 CTD/BON 71 obath 700 70M53 61.2822 .173.493 61 51.73 .128 CTD/BON 70 obath 700 70M54 62.1826 .174.693 62 1.50 .174
outantym outskip 2 outskip 2 <thoutskip 2<="" th=""> <thoutskip 2<="" th=""> <thou< td=""><td>useam.set useam.set 173 355.002 TCP ND 65 obath 70m 70M46 60.5718 -173.6395 60 44.31 -173 38.83 TCP ND 68 obath 70m 70M47 60.5738 -173.8247 60 54.438 -173 49.48 CTD 71 obath 70m 70M51 61.1407 -173.34247 60 54.438 -173 44.45 CTD 75 obath 70m 70M51 61.1407 -173.34547 61 35.61 -173 42.73 CTD/80N 71 obath 70m 70M53 61.273 -174.143642 61 56.00 -174 71.28 CTD/80N 73 obath 70m 70M55 61.9730 -174.14.3642 61 56.00 -174 37.02 CTD/80N 70 obath 70m 70M54 61.2026 -174.4587 62 11.69 -174 43.00 CTD/80N 70 obath 70m 70M56 62.2026 -174.689</td></thou<></thoutskip></thoutskip>	useam.set useam.set 173 355.002 TCP ND 65 obath 70m 70M46 60.5718 -173.6395 60 44.31 -173 38.83 TCP ND 68 obath 70m 70M47 60.5738 -173.8247 60 54.438 -173 49.48 CTD 71 obath 70m 70M51 61.1407 -173.34247 60 54.438 -173 44.45 CTD 75 obath 70m 70M51 61.1407 -173.34547 61 35.61 -173 42.73 CTD/80N 71 obath 70m 70M53 61.273 -174.143642 61 56.00 -174 71.28 CTD/80N 73 obath 70m 70M55 61.9730 -174.14.3642 61 56.00 -174 37.02 CTD/80N 70 obath 70m 70M54 61.2026 -174.4587 62 11.69 -174 43.00 CTD/80N 70 obath 70m 70M56 62.2026 -174.689
bath70m 70M47 60.738 712.640 60.4120 712 64.92 712 64.93 717 84.88 717 84.88 717 84.88 717 84.88 717 84.88 717 84.88 717 84.97 717 84.97 717 84.97 717 84.97 717 84.97 717 84.97 717 84.97 717 84.97 717 84.97 717 84.97 717 84.97 717 84.97 717 84.97 717 84.97 717 84.97 717 85.66 717 717 85.66 717 717 85.66 717 717 85.66 717 717 85.66 717 717 85.66 717 717 93.92 717 93.92 717 93.92 717 93.92 717 93.92 717 93.92 717 93.92 717 93.92 717 93.92 717 93.92 93.92 93.92 93.92	babtr70m 70M47 60.3788 -17.3 48.88 CTU/E0N 72 babtr70m 70M48 60.90733 -17.3 48.48 CTU/E0N 73 babtr70m 70M49 61.0657 -17.3 49.48 CTD 81 obstr70m 70M50 61.4657 -17.3 49.44 CTD 75 obstr70m 70M51 61.4107 -17.3 44.64 CTD 75 obstr70m 70M53 61.2723 -17.3 43.61 -17.3 42.73 CTD 72 obstr70m 70M55 61.9433 -174.4562 61 55.60 -174 21.85 CTD/80N 73 obstr70m 70M55 61.9433 -174.6170 61 55.60 -174 31.00 CTD/80N 70 0sbtr70m 70M55 62.9433 -174.4835 62 11.89 -174 41.01 Subtrafee Mooring 70.00 0sbtr70m 70M56 62.1200 -174.4835 62
obath 70m 70M448 60 90733 -173 8247 60 54.4398 -173 49.48 CTD 81 obath 70m 70M50 61.02498 -173.7408 61 14.99 -173 44.45 CTD 75 obath 70m 70M51 61.12498 -173.7362 61 24.64 -173 42.75 CTD 72 obath 70m 70M52 61.5602 -173.7122 61 33.61 -173 42.75 CTD 71 obath 70m 70M53 61.8622 -174.8934 61 51.73 -174 56 CTD 71 obath 70m 70M55 61.9750 -174.6135 62 11.69 -174 35.02 CTD/80N 70 obath 70m M8-5 62.0200 -174.6835 62 11.89 -174 43.03 CTD/80N 70.00 8/14B5 A 62.1949 -174.6830 62 12.00 -174 43.03 CTD/80N 70.00 boath 70m M8 62.2000 -174.7500 62 12.00 -174 <td< td=""><td>obath 70m 70M48 60 90733 -173 8247 60 54.4398 -173 49.46 CTD 81 obath 70m 70M50 61.02498 -173 49.76 CTD/80N 79 obath 70m 70M51 61.12498 -173 44.17 CTD/80N 75 obath 70m 70M52 61.5002 -173 42.61 -173 44.17 CTD/80N 71 obath 70m 70M53 61.51602 -173 42.73 CTD/80N 71 obath 70m 70M53 61.9333 -174.3642 61 55.60 -174 37.02 CTD/80N 70 obath 70m 70M56 62.0265 -174.6587 62 1.59 -174 39.02 CTD/80N 70 obath 70m M8* 62.1949 -174.6889 62 1.108 -174 4.30 4.500 CTD/80N 70 obath 70m M8* 62.2000 -174.7500 62 12.00 -174 45.00 CTD/80N 70</td></td<>	obath 70m 70M48 60 90733 -173 8247 60 54.4398 -173 49.46 CTD 81 obath 70m 70M50 61.02498 -173 49.76 CTD/80N 79 obath 70m 70M51 61.12498 -173 44.17 CTD/80N 75 obath 70m 70M52 61.5002 -173 42.61 -173 44.17 CTD/80N 71 obath 70m 70M53 61.51602 -173 42.73 CTD/80N 71 obath 70m 70M53 61.9333 -174.3642 61 55.60 -174 37.02 CTD/80N 70 obath 70m 70M56 62.0265 -174.6587 62 1.59 -174 39.02 CTD/80N 70 obath 70m M8* 62.1949 -174.6889 62 1.108 -174 4.30 4.500 CTD/80N 70 obath 70m M8* 62.2000 -174.7500 62 12.00 -174 45.00 CTD/80N 70
Outanty Turking 01.0037 1.13.223 01 3.94 1.13 44.45 CTD 75 obath70m 70M51 61.1407 173.7362 61 24.64 173 44.15 CTD 75 obath70m 70M53 61.2238 173.7362 61 24.64 173 41.7 CTM/80N 75 obath70m 70M53 61.2737 173.8547 61 43.64 -173 51.28 CTD/80N 71 obath70m 70M55 61.9433 174.3642 61 55.00 -174 25.6 CTD 74 obath70m 70M55 62.0265 174.6370 62 12.00 -174 39.52 CTD 74 obath70m 70M56 62.0265 174.6890 62 11.38 -174 41.04 Subsurface Mooring 70.00 bath70m 708 62.2000 174.7500 62 12.00 -174 45.00 7160N 70 bath70m 708 62.2000 174.7500 62 12.00 -174 45.00 716	Journer Journe Journers 01.007 -1/3.62/3 01 3.94 -1/3 49./6 (L196)(N) 79 obath70m 70M51 61.14107 -1/3.7408 61 14.94 -1/3 44.45 CTD 75 obath70m 70M51 61.1407 -1/3.7122 61 33.61 -1/3 42.73 CTD 72 obath70m 70M53 61.7273 -1/3.8547 61 51.66 -1/4 3.128 CTD/80N 73 obath70m 70M55 61.9433 -1/4.8107 61 55.60 -1/4 21.85 CTD/80N 73 obath70m 70M56 62.0265 -1/4.800 62 12.00 -1/4 13.02 CTD/80N 70 obath70m M8-E 62.2000 -1/4.800 62 11.38 -1/4 41.34 Subsurface Mooring 70.00 obath70m M8 62.2000 -1/4.7500 62 12.00 -1/4 45.00 CTD/80N 80 solt170m M8 62.2000 -1/74.6987 62 22.66
obath70m 70M51 61.4107 -173.362 61 24.64 -173 44.17 CTD/BON 75 obath70m 70M52 61.5602 -173.7122 61 33.61 -173 42.73 CTD 72 obath70m 70M53 61.7273 173.8547 61 43.64 -173 42.73 CTD 71 obath70m 70M53 61.8622 -174.0943 61 51.73 -174 35.62 CTD 73 obath70m 70M55 61.9750 -174.6587 62 1.59 -174 39.52 CTD 74 obath70m 70M56 62.0206 -174.6587 62 11.69 -174 41.03 Subsurface Mooring 70.00 obath70m 70M8 62.2000 -174.7500 62 12.00 -174 45.00 CTD/BON 70 obath70m 70M8 62.2000 -174.500 62 12.00 -174 45.00 CTD/BON 73 obath70m 70M8 62.2000 -174.500 62 12.00 -	obath70m 70M51 61.4107 -173.7362 61 24.64 -173 44.17 CTD/BON 77 obath70m 70M52 61.5602 -173.7122 61 33.61 -173 42.73 CTD 72 obath70m 70M53 61.7273 173.8547 61 43.64 -173 42.73 CTD 71 obath70m 70M54 61.8622 -174.0943 61 51.73 -174 5.66 CTD 71 obath70m 70M55 61.9433 -174.6170 61 58.50 -174 39.52 CTD 74 obath70m 70M56 62.0265 -174.6837 62 11.69 -174 41.01 Subsurface Mooring 70.00 obath70m 70 62 12.00 -174 45.00 CTJ/BON 70 obath70m 78 62.2000 -174.500 62 12.00 -174 45.00 CTJ/BON 70 obath70m 78 62.2000 -175.2000 62 12.00 -174 45.00 CTJ/BON 73 </td
obath?Om 70M53 61.5602 1.73.7122 61 33.61 -17.3 51.28 CT0/60N 71 obath?Om 70M54 61.8622 -174.0943 61 51.73 -17.4 5.66 CTD 71 obath?Om 70M55 61.9433 -174.4587 61 56.0 -174 31.85 CTD/80N 73 obath?Om 70M55 61.9750 174.6587 62 1.59 -174 31.80 CTD/80N 70 obath?Om M8-E 62.2000 -174.46835 62 11.38 -174 41.03 suburface Mooring 70.00 18/1485P-8A 62.3000 -174.7500 62 12.00 -174 45.00 CTD/80N 70 obath?Om M8- 62.2000 -174.7500 62 12.00 -174 45.00 CTD/80N 70 obath?Om M8-W 62.2000 -174.7500 62 12.00 -174 45.00 CTD/80N 70 obath?Om M8-W 62.2100 -175.200 62 52.6 -174	obath 70m r/VMS2 61.6902 -173.7122 61 33.61 -173 42.7 CTD 72 obath 70m 70M54 61.8622 -174.0943 61 51.73 -174 5.66 CTD 71 obath 70m 70M55 61.9433 -174.3642 61 56.60 -174 21.85 CTD/BON 73 obath 70m 70M55 61.9250 -174.6587 62 1.59 -174 39.52 CTD 74 obath 70m 70M5 62.0265 -174.6835 62 11.69 -174 41.01 Subsurface Mooring 70.00 18/1485-84 62.1999 -174.6890 62 12.00 -174 45.00 CTD/BON 70 obath 70m M8 62.2000 -174.7500 62 12.00 -174 45.00 CTD/BON 70 obath 70m M8-W 62.4210 -174.6987 62 25.26 -174 45.02 CTD/MON 73 obath 70m M8-W 62.4210 -174.6987 62 25.26 -174
Construct Construct Construct Part 3 Part 3 State CTD 3 Part 3 obath70m 70M55 61.9433 -174.3642 61 56.60 -174 51.65 CTD 71 obath70m 70M55 61.9433 -174.6170 61 58.50 -174 39.52 CTD 74 obath70m 70M55 62.0200 -174.4500 62 12.00 -174 41.00 Substraface Mooring 70.00 both70m M8-E 62.2000 -174.7500 62 12.00 -174 45.00 CTD/80N 70 obath70m M8 62.2000 -174.7500 62 12.00 -174 45.00 CTD/80N 80 obath70m M8-N 62.2000 -174.7500 62 12.00 -174 45.00 CTD/80N 80 obath70m M8-N 62.2000 -176.750.00 62 12.00 -174 45.00 CTD/80N 80 obath70m M8-N 6	Classical Classical Classical First
obath70m 70M55 61.9433 -174.8170 61 56.60 -174 21.85 CTD/BON 73 obath70m M8-5 61.9750 -174.6170 61 58.50 -174 33.02 CTD/BON 70 obath70m M8-E 62.2000 -174.800 62 1.20 -174 41.01 Subsurface Mooring 70.00 18/1485-8A 62.1896 -174.6890 62 11.38 -174 41.04 Subsurface Mooring 70.00 18/1485-PA 62.2000 -174.7500 62 12.00 -174 45.00 GJWT 73 obath70m M8 62.2000 -174.7500 62 12.00 -174 45.00 GJWT 73 obath70m M8-N 62.2000 -175.700 62 12.00 -174 45.00 GJWT 73 obath70m M8-N 62.4000 -175.2006 62 12.00 CTD/BON 73 ering Canyon UT3 54.1073 167.2822	obath70m 70M55 61.9433 -174.3642 61 56.60 -174 21.85 CTD/BON 73 obath70m M8-5 61.9750 -174.6170 61 58.50 -174 39.52 770 obath70m M8-E 62.2000 -174.4000 62 12.00 -174 41.00 CTD/BON 70 B/14BSP.8A 62.1896 -174.6890 62 11.38 -174 41.03 Subsurface Mooring 70.00 both70m M8 62.2000 -174.7500 62 12.00 -174 45.00 CTD/BON 80 obath70m M8 62.2000 -174.7500 62 12.00 -174 45.00 CTD/BON 80 obath70m M8-N 62.4210 -174.6987 62 52.6 -174 41.92 CTD/BON 80 obath70m M8-N 62.4210 -176.2882 54 5.19 -167 33 51 717 -166 58.55 CTD/MNTE <t< td=""></t<>
Uncant/run mes-s 1.97.50 -174.107.00 58.50 -174 33.02 CTD/BON 70 obath70m M8-E 62.2000 -174.3000 62 1.59 -174 39.52 CTD 74 obath70m M8-E 62.2000 -174.800 62 1.108 -174 41.301 Subsurface Mooring 70.00 bk1/1485-8A 62.1949 -174.6830 62 1.200 -174 41.01 Subsurface Mooring 70.00 obath70m M8 62.2000 -174.7500 62 1.200 -174 45.00 CTO/BON 80 obath70m M8-W 62.2000 -175.2000 62 1.200 -175 1.200 CTD/BON 80 obath70m M8-W 62.2000 -174.6987 62 52.66 -174 41.92 CTD/BON 73 ering Canyon UT3 54.1737 -167.282 54 1.42 -167 3.89 CTD 1120 ering Canyon UT3 54.17	Uncentrum me-s 1.97.90 -174.107.00 58.50 -174 39.52 CTD//BON 70 obath70m M8-E 62.2000 -174.3000 62 12.00 -174 39.52 CTD 74 bath70m M8-E 62.2000 -174.8030 62 11.08 -174.41.01 Subsurface Mooring 70.00 B/14859-8A 62.1949 -174.6830 62 11.08 -174.45.00 CTD//BON 70 obath70m M8 62.2000 -174.7500 62 12.00 -174 45.00 CTD//BON 70 obath70m M8 62.2000 -174.7500 62 12.00 -174 45.00 CTD//BON 70 obath70m M8-W 62.2000 -174.5970 62 12.00 -174 45.00 CTD//BON 73 ering Canyon UT5 53.9777 -166.3757 54.065 54.065 54.065 54.065 164 63.37 167 16.33 CTD//MNET 630 ering Canyon UT1<
Dath 7/0m MS-E 62.200 1/1/3000 62 1.00 1/1/4 18/00 70 18/1485-8A 62.1949 -174.6835 62 11.69 -174 41.01 Subsurface Mooring 70.00 18/1485-8A 62.2196 -174.6890 62 11.38 -174 41.03 Subsurface Mooring 70.00 0bath 7/0m MS 62.2000 -174.7500 62 12.00 -174 45.00 CTD/80N 70 obath 7/0m MS 62.2000 -174.7500 62 12.00 -174 45.00 CTD/80N 73 obath 7/0m MS-W 62.2000 -175.200 62 12.00 -167 3.89 CTD/80N 73 ering Canyon UT3 54.1737 -167.1558 54 10.42 -167 9.35 CTD/MNET 1624 ering Canyon UT3 54.4618 -166.9357 54 27.81 -166 56.14 CTD/MNET 497 ering Canyon AW5 54.4618 -166.9357<	bath 20m M&E 62 1.20 1.24 18.00 18.25 18.20 14.20 12.0
18/1485-8A 62.1949 -174.6835 62 11.69 -174 41.01 Subsurface Mooring 70.00 18/1485-8A 62.1896 -174.6890 62 11.38 -174 45.00 CTD/80N 70 obath70m M8 62.2000 -174.7500 62 12.00 -174 45.00 CTD/80N 80 obath70m M8-W 62.2000 -174.7500 62 12.00 -174 45.00 CTD/80N 80 obath70m M8-W 62.2000 -174.8987 62 25.26 -174 41.92 CTD/80N 80 obath70m M8-N 62.2101 -174.6987 62 25.26 -174 41.92 CTD/80N 73 ering Canyon UT5 53.977 -166.9758 53 58.66 -166 58.55 CTD/MNET 1624 ering Canyon UT3 54.1373 -167.1822 54 10.42 -167 9.35 CTD/MNET 1624 ering Canyon AW4 54.3175 -167.2822 54 10.02 -166 59.37 CTD 1000 ering Canyon AW5 54.4618 -166.9325 54 12.35 -	18/1485-8A 62.1949 -174.6835 62 11.69 -174 41.01 Subsurface Mooring 70.00 18/1485-8A 62.1896 -174.6890 62 11.38 -174 45.00 CTD/8ON 70 obath70m M8 62.2000 -174.7500 62 12.00 -174 45.00 CTD/8ON 80 obath70m M8-W 62.2000 -174.7500 62 12.00 -174 45.00 CTD/8ON 80 obath70m M8-W 62.2000 -174.7500 62 12.00 -174 45.00 S CalVETs 70 obath70m M8-N 62.2101 -174.6987 62 52.52 -174 41.92 CTD/8ON 73 ering Canyon UT5 53.9777 -166.9758 53 58.66 -166 58.55 CTD/MNET 1624 ering Canyon UT1 54.480 -167.382 54 10.42 -167 9.35 CTD 10.20 1624 ering Canyon AW4 54.3178 -166.2357 54 10.05 -161 10.01NET 497 ering Canyon AW1 54.0708 -166.6522 54 8.06
Dig Andona Cont Dig Andona	total and the second
bath 70m M8 62.2000 -174,7500 62 12.00 -174 45.00 3 CalVETs 70 obath 70m M8-W 62.2000 -174,7500 62 12.00 -175 12.00 CTD/BON 80 obath 70m M8-N 62.4210 -174.6997 62 25.26 -174 41.92 CTD/BON 73 ering Canyon UT5 53.9777 -166.9758 53 58.66 -167 3.89 CTD 1120 ering Canyon UT3 54.1737 -167.1558 54 10.42 -167 9.35 CTD/MNET 1624 ering Canyon UT1 54.4480 -167.3820 54 26.88 -167 2.292 CTD/MNET 650 ering Canyon AW3 54.2058 -166.7330 54 12.07 -166 49.40 CTD 810 ering Canyon AW3 54.2058 -166.6562 54 8.06 -166 39.37 CTD 1000 ering Canyon AW2 54.1343 -166.6562 54 8.06 -166 3.93 CTD/MNET 125	both/TOm M8 62.2000 -174.7500 62 12.00 -174.45.00 32.00 CTL/VETS 70 obath/TOm M8-W 62.2000 -174.7500 62 12.00 -174 45.00 3 CalVETs 70 obath/TOm M8-N 62.2000 -174.6987 62 25.26 -174 41.92 CTD/BON 80 obath/TOm M8-N 62.4210 -174.6987 62 25.26 -174 41.92 CTD/BON 73 ering Canyon UT3 54.1737 -166.9758 53 58.66 -166 58.55 CTD/MNET 1624 ering Canyon UT2 54.317 -167.1558 54 10.42 -167 16.93 CTD 853 ering Canyon UT1 54.44618 -166.3320 54 26.88 -167 29.22 CTD/MNET 166 ering Canyon AW3 54.2058 -166.73320 54 12.35 -166 39.37 <ctd< td=""> 1000 ering Canyon AW3 54.2078 -166.6217<</ctd<>
obath70m M8-W 62.2000 -175.2000 62 12.00 -175 12.00 CTD/BON 80 obath70m M8-N 62.4210 -174.6987 62 25.26 -174 41.92 CTD/BON 73 ering Canyon UT5 53.977 -166.9758 53 58.66 -166 58.55 CTD/MNET 162 ering Canyon UT3 54.1737 -167.1558 54 10.42 -167 9.35 CTD/MNET 1624 ering Canyon UT2 54.3175 -167.2822 54 19.05 -167 16.93 CTD 853 ering Canyon UT2 54.4618 -166.9357 54 27.71 -166 56.14 CTD/MNET 497 ering Canyon AW3 54.2058 -166.7030 54 12.35 -166 39.37 CTD 1000 ering Canyon AW3 54.0707 -166.6217 54 8.06 -166 39.37 CTD 1000 ering Canyon AE1 54.0377 -166.522 54	obath70m M8-W 62.2000 -175.2000 62 12.00 -175 12.00 CTD/BON 80 obath70m M8-N 62.4210 -174.6987 62 25.26 -174 41.92 CTD/BON 73 ering Canyon UT4 54.0865 -167.0648 54 5.19 -167 3.89 CTD 1120 ering Canyon UT3 54.1737 -167.1558 54 10.42 -167 0.53 CTD/MNET 1624 ering Canyon UT1 54.4480 -167.3820 54 26.88 -167 22.92 CTD/MNET 497 ering Canyon AW4 54.3178 -166.8233 54 19.07 -166 49.40 CTD 810 ering Canyon AW3 54.2058 -166.7030 54 12.35 -166 39.37 CTD 1000 ering Canyon AW1 54.0708 -166.6217 54 8.05 -166 39.37 CTD/MNET 108 ering Canyon AE1 54.367 -166.3252 54
Construction Horst Construction Horst Construction Horst Horst <thho< td=""><td>Classified<</td></thho<>	Classified<
ering Canyon UT4 54.0865 -167.0648 54 5.19 -167 3.89 CTD 1120 ering Canyon UT3 54.1737 -167.1558 54 10.42 -167 9.35 CTD/MNET 1624 ering Canyon UT2 54.3175 -167.2822 54 19.05 -167 16.93 CTD 853 ering Canyon UT1 54.4480 -167.3820 54 26.88 -167 22.92 CTD/MNET 650 ering Canyon AW5 54.4618 -166.9357 54 27.71 -166 56.14 CTD/MNET 497 ering Canyon AW4 54.3178 -166.62333 54 19.07 -166 49.40 CTD 810 ering Canyon AW3 54.2058 -166.7030 54 12.35 -166 37.30 CTD/MNET 1080 ering Canyon AW1 54.0708 -166.5225 54 8.06 -166 39.37 CTD 1000 ering Canyon AE1 54.1687 -166.5285 54 33.64 -166 35.91 CTD/MNET 125 ering Canyon AE1 54.4395 -164.9807 54 26.37 -164 58.44 CTD/BON 46<	ering Canyon UT4 54.0865 -167.0648 54 5.19 -167 3.89 CTD 1120 ering Canyon UT3 54.1737 -167.1558 54 10.42 -167 9.35 CTD/MNET 1624 ering Canyon UT1 54.4460 -167.3820 54 19.05 -167 16.93 CTD 853 ering Canyon UT1 54.4460 -166.3325 54 26.88 -167 22.92 CTD/MNET 650 ering Canyon AW5 54.4618 -166.9357 54 27.71 -166 56.14 CTD/MNET 497 ering Canyon AW3 54.2058 -166.6203 54 12.35 -166 42.18 CT/MNET 1367 ering Canyon AW2 54.1343 -166.6562 54 8.06 -166 39.37 CTD 1000 ering Canyon AE1 54.687 -166.2325 54 10.12 -166 13.95 CTD/MNET 125 ering Canyon AE3 54.3037 -166.3528 54 33.64 -107/MNET 425 ering Canyon AE3 54.307 -165.3528 54 33.64 -166 35.91 CTD/MNET 425 <tr< td=""></tr<>
ering Lanyon U13 54.1/3/ -167.1558 54 10.42 -167 9.35 CTD/MNET 1624 ering Canyon UT2 54.3175 -167.2822 54 19.05 -167 16.93 CTD 853 ering Canyon UT1 54.4480 -166.9357 54 26.88 -167 22.92 CTD/MNET 650 ering Canyon AW3 54.2058 -166.8233 54 19.07 -166 49.40 CTD 810 ering Canyon AW3 54.2058 -166.7030 54 12.35 -166 49.37 CTD 1000 ering Canyon AW1 54.1343 -166.6217 54 4.25 -166 37.30 CTD/MNET 108 ering Canyon AE1 54.1687 -166.2325 54 10.12 -166 13.95 CTD/MNET 425 ering Canyon AE1 54.4307 -164.9807 54 26.37 -164 58.44 CTD/BON 46 nimak Box UBS2 54.420 -165.1352 54 25.44 -165 8.11 CTD/BON 130 nima	ering canyon U12 54.17.47 -167.1558 54 10.42 -167 9.35 CTD/MNET 1624 ering Canyon UT2 54.3175 -167.2822 54 19.05 -167 16.93 CTD 853 ering Canyon UT1 54.4460 -167.3820 54 27.71 -166 56.14 CTD/MNET 497 ering Canyon AW3 54.2058 -166.7030 54 12.35 -166 49.40 CTD 810 ering Canyon AW3 54.2058 -166.7030 54 12.35 -166 39.37 CTD 1000 ering Canyon AW2 54.1343 -166.6217 54 4.25 -166 37.30 CTD/MNET 108 ering Canyon AE1 54.0507 -166.3225 54 10.12 -166 13.95 CTD/MNET 125 ering Canyon AE1 54.45607 -166.5285 54 18.22 -166 35.91 CTD/MNET 425 nimak Box UBS1 54.4395 -164.9807 54 26.37 -164 58.84 CTD/BON 46 nimak Box UBS2 54.4240 -165.1352 54 26.37 -165 16
ering Canyon UT1 54.4480 -167.3820 54 26.88 -167 22.92 CTD/MNET 650 ering Canyon AW5 54.4618 -166.9357 54 27.71 -166 56.14 CTD/MNET 497 ering Canyon AW3 54.2058 -166.7030 54 12.35 -166 42.18 CTD/MNET 1367 ering Canyon AW2 54.1343 -166.6562 54 8.06 -166 39.37 CTD 1000 ering Canyon AW1 54.0708 -166.2325 54 10.12 -166 37.30 CTD/MNET 108 ering Canyon AE1 54.1687 -166.3528 54 18.22 -166 21.17 CTD/MNET 125 ering Canyon AE3 54.3037 -166.3528 54 18.22 -166 21.17 CTD/MNET 425 nimak Box UBS1 54.4395 -164.9807 54 26.37 -164 58.4 CTD/BON 46 nimak Box UBS2 54.4240 -165.1352 54 25.44 -165 6.01 CTD/BON 156	ering Canyon UT1 54.4480 -167.32.0 54 26.88 -167 22.92 CTD/MNET 650 ering Canyon AW5 54.4618 -166.9357 54 27.71 -166 56.14 CTD/MNET 497 ering Canyon AW4 54.3178 -166.8233 54 19.07 -166 49.40 CTD 810 ering Canyon AW3 54.2058 -166.7030 54 12.25 -166 49.37 CTD 1000 ering Canyon AW1 54.0708 -166.6217 54 4.25 -166 37.30 CTD/MNET 108 ering Canyon AE1 54.1687 -166.3225 54 10.12 -166 13.95 CTD/MNET 125 ering Canyon AE1 54.5607 -166.5285 54 33.64 -166 35.91 CTD/MNET 425 ering Canyon AE5 54.4507 -166.51352 54 26.37 -164 58.44 CTD/BON 46 nimak Box UBS1 54.393 -165.1352 54 25.44 -165 8.11 CTD/BON 130 nimak Box UBS3 54.3243 -165.1352 54 26.37 -164 5
ering Lanyon AWS 54.4618 -166.9357 54 27.71 -166 56.14 CTD/MNET 497 ering Canyon AW4 54.3178 -166.8233 54 19.07 -166 49.40 CTD 810 ering Canyon AW3 54.2058 -166.7030 54 19.07 -166 42.18 CTD/MNET 1367 ering Canyon AW2 54.1343 -166.6562 54 8.06 -166 39.37 CTD 1000 ering Canyon AW1 54.0708 -166.6217 54 4.25 -166 37.30 CTD/MNET 108 ering Canyon AE1 54.1687 -166.3225 54 10.12 -166 13.95 CTD/MNET 125 ering Canyon AE3 54.3037 -166.5282 54 18.22 -166 35.91 CTD/MNET 980 ering Canyon AE5 54.5607 -166.5985 54 38.64 -166 35.91 CTD/MNET 425 nimak Box UBS2 54.4240 -165.1352 54 25.44 -165 8.11 CTD/BON 130 nimak Box UBS4 54.3383 -165.9335 54 21.69 -165 <td< td=""><td>ering Lanyon AWs 54.4618 -166.9357 54 27.71 -166 56.14 CTD/MNET 497 ering Canyon AW4 54.3178 -166.8233 54 19.07 -166 49.40 CTD 810 ering Canyon AW3 54.2058 -166.7030 54 12.35 -166 42.18 CTD/MNET 1367 ering Canyon AW2 54.1343 -166.6512 54 8.06 -166 37.30 CTD/MNET 1000 ering Canyon AW1 54.0078 -166.3225 54 10.12 -166 13.95 CTD/MNET 125 ering Canyon AE3 54.3037 -166.5285 54 36.4 -166 35.91 CTD/MNET 425 nimak Box UBS1 54.4395 -164.9807 54 26.37 -164 58.44 CTD/BON 130 nimak Box UBS2 54.4240 -165.1352 54 22.75 -165 16.70 CTD 166 nimak Box UBS4 54.3383 -165.2783 54 22.75 -165 16.01 CTD/BON 374</td></td<>	ering Lanyon AWs 54.4618 -166.9357 54 27.71 -166 56.14 CTD/MNET 497 ering Canyon AW4 54.3178 -166.8233 54 19.07 -166 49.40 CTD 810 ering Canyon AW3 54.2058 -166.7030 54 12.35 -166 42.18 CTD/MNET 1367 ering Canyon AW2 54.1343 -166.6512 54 8.06 -166 37.30 CTD/MNET 1000 ering Canyon AW1 54.0078 -166.3225 54 10.12 -166 13.95 CTD/MNET 125 ering Canyon AE3 54.3037 -166.5285 54 36.4 -166 35.91 CTD/MNET 425 nimak Box UBS1 54.4395 -164.9807 54 26.37 -164 58.44 CTD/BON 130 nimak Box UBS2 54.4240 -165.1352 54 22.75 -165 16.70 CTD 166 nimak Box UBS4 54.3383 -165.2783 54 22.75 -165 16.01 CTD/BON 374
Ling Canyon AW354.2058-160.70305412.35-16049.40 CTD810ering Canyon AW254.1343-166.6562548.06-16639.37 CTD10000ering Canyon AW154.0708-166.6217544.25-16637.30 CTD/MNET108ering Canyon AE154.1687-166.23255410.12-16613.95 CTD/MNET125ering Canyon AE354.3037-166.35285418.22-16621.17 CTD/MNET980ering Canyon AE554.5607-166.59855433.64-16635.91 CTD/MNET425nimak BoxUBS154.4395-164.98075426.37-16458.84 CTD/BON46nimak BoxUBS154.4395-165.27835422.75-16516.70 CTD166nimak BoxUBS254.4240-165.13525420.30-16526.09 CTD/BON130nimak BoxUBS454.3383-165.27835420.30-16526.09 CTD/BON156nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON475nimak BoxUBW354.5813-166.12285434.88-1667.37 CTD415nimak BoxUBW354.5813-166.23985445.21-1663.38 CTD/BON293nimak BoxUBW454.6863-165.66675451.92-16551.70 CTD/BON219nimak BoxUBN454.9307	Ling Lang, Ling Status Status <t< td=""></t<>
ering Canyon AW254.1343-166.6562548.06-16639.37 CTD1000ering Canyon AW154.0708-166.6217544.25-16637.30 CTD/MNET108ering Canyon AE154.1687-166.23255410.12-16613.95 CTD/MNET125ering Canyon AE354.3037-166.35285418.22-16621.17 CTD/MNET980ering Canyon AE554.607-166.59855433.64-16635.91 CTD/MNET425nimak BoxUBS154.4395-164.98075426.37-16458.84 CTD/BON130nimak BoxUBS254.4240-165.13525422.44-1658.11 CTD/BON130nimak BoxUBS354.3792-165.27835422.75-16516.70 CTD166nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON156nimak BoxUBW254.4742-166.03805428.45-1662.28 CTD/BON534nimak BoxUBW254.4742-166.05635445.21-1663.38 CTD/BON293nimak BoxUBW354.6863-166.23985441.18-16614.39 CTD/BON219nimak BoxUBN154.7535-165.66675451.92-16551.70 CTD/BON165nimak BoxUBN354.8653-165.66675451.92-16551.70 CTD/BON165nimak BoxUBN4 <td>ering Canyon AW254.1343-166.6562548.06-16639.37 CTD1000ering Canyon AW154.0708-166.6217544.25-16637.30 CTD/MNET108ering Canyon AE154.1687-166.23255410.12-16613.95 CTD/MNET125ering Canyon AE354.3037-166.35285418.22-16621.17 CTD/MNET980ering Canyon AE354.3037-166.59855433.64-16635.91 CTD/MNET425nimak BoxUBS154.4395-164.98075426.37-16458.84 CTD/BON130nimak BoxUBS254.4240-165.13525422.44-1658.11 CTD/BON130nimak BoxUBS354.3792-165.27835422.75-16516.70 CTD166nimak BoxUBS454.3383-165.43485420.30-16526.09 CTD/BON156nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON475nimak BoxUBW254.4742-166.03805428.45-1662.28 CTD/BON293nimak BoxUBW354.5813-166.05635445.21-1663.38 CTD/BON293nimak BoxUBW454.6863-166.05635445.21-1663.38 CTD/BON219nimak BoxUBN354.8653-165.06675451.92-16551.70 CTD/BON165nimak BoxUBN4</td>	ering Canyon AW254.1343-166.6562548.06-16639.37 CTD1000ering Canyon AW154.0708-166.6217544.25-16637.30 CTD/MNET108ering Canyon AE154.1687-166.23255410.12-16613.95 CTD/MNET125ering Canyon AE354.3037-166.35285418.22-16621.17 CTD/MNET980ering Canyon AE354.3037-166.59855433.64-16635.91 CTD/MNET425nimak BoxUBS154.4395-164.98075426.37-16458.84 CTD/BON130nimak BoxUBS254.4240-165.13525422.44-1658.11 CTD/BON130nimak BoxUBS354.3792-165.27835422.75-16516.70 CTD166nimak BoxUBS454.3383-165.43485420.30-16526.09 CTD/BON156nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON475nimak BoxUBW254.4742-166.03805428.45-1662.28 CTD/BON293nimak BoxUBW354.5813-166.05635445.21-1663.38 CTD/BON293nimak BoxUBW454.6863-166.05635445.21-1663.38 CTD/BON219nimak BoxUBN354.8653-165.06675451.92-16551.70 CTD/BON165nimak BoxUBN4
ening canyon AW154.0708-166.5217544.25-16637.30 CTD/MNET108ering Canyon AE154.1687-166.23255410.12-16613.95 CTD/MNET125ering Canyon AE354.3037-166.35285418.22-16621.17 CTD/MNET980ering Canyon AE554.5607-166.59855433.64-16635.91 CTD/MNET425nimak BoxUBS154.4395-164.98075426.37-16458.84 CTD/BON46nimak BoxUBS254.4240-165.13525425.44-1658.11 CTD/BON130nimak BoxUBS354.3792-165.27835422.75-16516.70 CTD166nimak BoxUBS454.3383-165.43485420.30-16526.09 CTD/BON156nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON475nimak BoxUBW254.4742-166.03805428.45-1662.28 CTD/BON534nimak BoxUBW354.5813-166.23985441.18-16614.39 CTD/BON293nimak BoxUBN454.6863-165.286175448.71-16551.70 CTD/BON165nimak BoxUBN454.9307-165.48335451.92-16540.00 CTD143nimak BoxUBN454.9307-165.28435451.92-16529.00 CTD/BON124nimak Box <td< td=""><td>ering canyon AW154.0/08-166.21/544.25-16637.30 CTD/MNET108ering Canyon AE154.1687-166.23255410.12-16613.95 CTD/MNET125ering Canyon AE354.3037-166.35285418.22-16621.17 CTD/MNET980ering Canyon AE554.5607-166.59855433.64-16635.91 CTD/MNET425nimak BoxUBS154.4395-164.98075426.37-16458.84 CTD/BON130nimak BoxUBS254.4240-165.13525422.75-16516.70 CTD166nimak BoxUBS354.3792-165.93355421.69-16556.01 CTD/BON156nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON456nimak BoxUBW254.4742-166.03805428.45-1662.28 CTD/BON534nimak BoxUBW254.863-166.23985441.18-16614.39 CTD/BON293nimak BoxUBN454.6863-165.26675451.92-16551.70 CTD/BON165nimak BoxUBN454.9307-165.86175448.71-16551.70 CTD/BON124nimak BoxUBN454.9307-165.86675451.92-16550.00 CTD143nimak BoxUBN454.9307-165.28435458.4-16529.00 CTD/BON124nimak BoxU</td></td<>	ering canyon AW154.0/08-166.21/544.25-16637.30 CTD/MNET108ering Canyon AE154.1687-166.23255410.12-16613.95 CTD/MNET125ering Canyon AE354.3037-166.35285418.22-16621.17 CTD/MNET980ering Canyon AE554.5607-166.59855433.64-16635.91 CTD/MNET425nimak BoxUBS154.4395-164.98075426.37-16458.84 CTD/BON130nimak BoxUBS254.4240-165.13525422.75-16516.70 CTD166nimak BoxUBS354.3792-165.93355421.69-16556.01 CTD/BON156nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON456nimak BoxUBW254.4742-166.03805428.45-1662.28 CTD/BON534nimak BoxUBW254.863-166.23985441.18-16614.39 CTD/BON293nimak BoxUBN454.6863-165.26675451.92-16551.70 CTD/BON165nimak BoxUBN454.9307-165.86175448.71-16551.70 CTD/BON124nimak BoxUBN454.9307-165.86675451.92-16550.00 CTD143nimak BoxUBN454.9307-165.28435458.4-16529.00 CTD/BON124nimak BoxU
ering Canyon AE3 54.3037 -166.3528 54 18.22 -166 21.17 CTD/MNET 980 ering Canyon AE5 54.5607 -166.5985 54 33.64 -166 35.91 CTD/MNET 425 nimak Box UBS1 54.4395 -164.9807 54 26.37 -164 58.84 CTD/BON 46 nimak Box UBS2 54.4240 -165.1352 54 25.44 -165 8.11 CTD/BON 130 nimak Box UBS3 54.3792 -165.2783 54 22.75 -165 16.70 CTD 166 nimak Box UBS4 54.3615 -165.9335 54 21.69 -165 56.01 CTD/BON 156 nimak Box UBW1 54.3615 -165.0380 54 28.45 -166 2.28 CTD/BON 534 nimak Box UBW2 54.4742 -166.0380 54 28.45 -166 7.37 CTD 415 nimak Box UBW3 54.5813 -166.2398 54 41.18 -166 14.39 CTD/BON 293 nimak Box UBN1 54.7535 -166.0563 <td>ering Canyon AE3 54.3037 -166.3528 54 18.22 -166 21.17 CTD/MNET 980 ering Canyon AE5 54.5607 -166.5985 54 33.64 -166 35.91 CTD/MNET 425 nimak Box UBS1 54.4395 -164.9807 54 26.37 -164 58.84 CTD/BON 46 nimak Box UBS2 54.4240 -165.1352 54 25.44 -165 8.11 CTD/BON 130 nimak Box UBS3 54.3792 -165.2783 54 20.30 -165 26.09 CTD/BON 156 nimak Box UBW1 54.3615 -165.9335 54 21.69 -165 56.01 CTD/BON 475 nimak Box UBW2 54.4742 -166.0380 54 28.45 -166 2.28 CTD/BON 534 nimak Box UBW2 54.4742 -166.0563 54 41.8 -166 7.37 CTD 415 nimak Box UBW4 54.6863 -165.2667 54 51.92 -165 51.70 CTD</td>	ering Canyon AE3 54.3037 -166.3528 54 18.22 -166 21.17 CTD/MNET 980 ering Canyon AE5 54.5607 -166.5985 54 33.64 -166 35.91 CTD/MNET 425 nimak Box UBS1 54.4395 -164.9807 54 26.37 -164 58.84 CTD/BON 46 nimak Box UBS2 54.4240 -165.1352 54 25.44 -165 8.11 CTD/BON 130 nimak Box UBS3 54.3792 -165.2783 54 20.30 -165 26.09 CTD/BON 156 nimak Box UBW1 54.3615 -165.9335 54 21.69 -165 56.01 CTD/BON 475 nimak Box UBW2 54.4742 -166.0380 54 28.45 -166 2.28 CTD/BON 534 nimak Box UBW2 54.4742 -166.0563 54 41.8 -166 7.37 CTD 415 nimak Box UBW4 54.6863 -165.2667 54 51.92 -165 51.70 CTD
ering Canyon AE554.5607-166.59855433.64-16635.91 CTD/MNET425nimak BoxUBS154.4395-164.98075426.37-16458.84 CTD/BON46nimak BoxUBS254.4240-165.13525425.44-1658.11 CTD/BON130nimak BoxUBS354.3792-165.27835422.75-16516.70 CTD166nimak BoxUBS454.3383-165.43485420.30-16526.09 CTD/BON156nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON475nimak BoxUBW254.4742-166.03805428.45-1662.28 CTD/BON534nimak BoxUBW354.5813-166.12285434.88-1667.37 CTD415nimak BoxUBW454.6863-166.23985441.18-16614.39 CTD/BON293nimak BoxUBN154.7535-166.05635445.21-1663.38 CTD/BON219nimak BoxUBN254.8118-165.86175448.71-16551.70 CTD/BON165nimak BoxUBN354.8653-165.66675451.92-16540.00 CTD143nimak BoxUBN454.9307-165.48335459.16-16517.06 CTD116nimak BoxUBN454.9307-165.28435459.16-16517.06 CTD116nimak Box <t< td=""><td>ering Canyon AES54.5607-166.59855433.64-16635.91 CTD/MNET425nimak BoxUBS154.4395-164.98075426.37-16458.84 CTD/BON46nimak BoxUBS254.4240-165.13525425.44-1658.11 CTD/BON130nimak BoxUBS354.3792-165.27835422.75-16516.70 CTD166nimak BoxUBS454.3383-165.43485420.30-16526.09 CTD/BON156nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON475nimak BoxUBW254.4742-166.03805428.45-1662.28 CTD/BON534nimak BoxUBW354.5813-166.12285434.88-1667.37 CTD415nimak BoxUBW454.6863-166.23985441.18-16614.39 CTD/BON293nimak BoxUBN154.7535-166.05635445.21-1663.38 CTD/BON219nimak BoxUBN254.8118-165.66675451.92-16551.70 CTD/BON165nimak BoxUBN354.9307-165.48335459.1616517.06 CTD143nimak BoxUBN454.9307-165.48335459.1616517.06 CTD116nimak BoxUBN554.9860-165.28435459.16-16517.06 CTD116nimak Box</td></t<>	ering Canyon AES54.5607-166.59855433.64-16635.91 CTD/MNET425nimak BoxUBS154.4395-164.98075426.37-16458.84 CTD/BON46nimak BoxUBS254.4240-165.13525425.44-1658.11 CTD/BON130nimak BoxUBS354.3792-165.27835422.75-16516.70 CTD166nimak BoxUBS454.3383-165.43485420.30-16526.09 CTD/BON156nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON475nimak BoxUBW254.4742-166.03805428.45-1662.28 CTD/BON534nimak BoxUBW354.5813-166.12285434.88-1667.37 CTD415nimak BoxUBW454.6863-166.23985441.18-16614.39 CTD/BON293nimak BoxUBN154.7535-166.05635445.21-1663.38 CTD/BON219nimak BoxUBN254.8118-165.66675451.92-16551.70 CTD/BON165nimak BoxUBN354.9307-165.48335459.1616517.06 CTD143nimak BoxUBN454.9307-165.48335459.1616517.06 CTD116nimak BoxUBN554.9860-165.28435459.16-16517.06 CTD116nimak Box
Numer Box000104.4393-104.90075420.37-10458.84 CTU/BON46nimak BoxUBS254.4240-165.13525425.44-1658.11 CTD/BON130nimak BoxUBS354.3792-165.27835422.75-16516.70 CTD166nimak BoxUBS454.3383-165.43485420.30-16526.09 CTD/BON156nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON475nimak BoxUBW254.4742-166.03805428.45-1662.28 CTD/BON534nimak BoxUBW354.5813-166.12285434.88-1667.37 CTD415nimak BoxUBW454.6863-166.23985445.21-1663.38 CTD/BON293nimak BoxUBN154.7535-166.05635445.21-16551.70 CTD/BON219nimak BoxUBN254.8653-165.66675451.92-16540.00 CTD143nimak BoxUBN354.8653-165.66675451.92-16540.00 CTD143nimak BoxUBN454.9307-165.48335455.84-16529.00 CTD/BON124nimak BoxUBN454.9307-165.48335459.16-16517.06 CTD116nimak BoxUBN554.9860-165.28435459.16-16517.06 CTD116nimak Box<	Inimak BoxUBS254.4393-104.900/5426.37-10458.84 C1D/BON46nimak BoxUBS254.4240-165.13525425.44-1658.11 CTD/BON130nimak BoxUBS354.3792-165.27835422.75-16516.70 CTD166nimak BoxUBS454.3383-165.43485420.30-16526.09 CTD/BON156nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON475nimak BoxUBW254.4742-166.03805428.45-1662.28 CTD/BON534nimak BoxUBW354.5813-166.12285434.88-1667.37 CTD415nimak BoxUBW454.6863-166.23985441.18-16614.39 CTD/BON293nimak BoxUBN454.6863-166.5635445.21-1663.38 CTD/BON219nimak BoxUBN254.8118-165.86175448.71-16551.70 CTD/BON165nimak BoxUBN354.853-165.66675451.92-16540.00 CTD143nimak BoxUBN454.9307-165.48335459.16-16517.06 CTD116nimak BoxUBN454.9370-165.28435459.16-16517.06 CTD116nimak BoxUBN655.0465-165.1117552.79-1656.70 CTD/BON113nimak Box
nimak Box UBS3 54.3792 -165.2783 54 22.75 -165 16.70 CTD 166 nimak Box UBS4 54.3383 -165.4348 54 20.30 -165 26.09 CTD/BON 156 nimak Box UBW1 54.3615 -165.9335 54 21.69 -165 56.01 CTD/BON 475 nimak Box UBW2 54.4742 -166.0380 54 28.45 -166 2.28 CTD/BON 534 nimak Box UBW3 54.5813 -166.1228 54 34.88 -166 7.37 CTD 415 nimak Box UBW4 54.6863 -166.2398 54 41.18 -166 14.39 CTD/BON 293 nimak Box UBN1 54.7535 -166.0563 54 45.21 -166 3.38 CTD/BON 219 nimak Box UBN2 54.8118 -165.8617 54 48.71 -165 51.70 CTD/BON 165 nimak Box UBN3 54.8653 -165.6667 54 51.92 -165 40.00 CTD 143 nimak Box UBN4 54.9307	nimak BoxUBS354.3792-165.27835422.75-16516.70 CTD166nimak BoxUBS454.3383-165.43485420.30-16526.09 CTD/BON156nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON475nimak BoxUBW254.4742-166.03805428.45-1662.28 CTD/BON534nimak BoxUBW354.5813-166.12285434.88-1667.37 CTD415nimak BoxUBW454.6863-166.23985441.18-16614.39 CTD/BON293nimak BoxUBN154.7535-166.05635445.21-1663.38 CTD/BON219nimak BoxUBN254.8118-165.66675451.92-16540.00 CTD143nimak BoxUBN354.8653-165.66675451.92-16540.00 CTD143nimak BoxUBN454.9307-165.48335455.84-16529.00 CTD/BON124nimak BoxUBN554.9860-165.28435459.16-16517.06 CTD116nimak BoxUBN655.0465-165.1117552.79-1656.70 CTD/BON113nimak BoxUBE154.9370-164.99285456.22-16459.57 CTD/BON93nimak BoxUBE154.9370-164.88955449.64-16453.37 CTD76
nimak BoxUBS454.383-165.43485420.30-16526.09 CTD/BON156nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON475nimak BoxUBW254.4742-166.03805428.45-1662.28 CTD/BON534nimak BoxUBW354.5813-166.12285434.88-1667.37 CTD415nimak BoxUBW454.6863-166.23985441.18-16614.39 CTD/BON293nimak BoxUBN154.7535-166.05635445.21-1663.38 CTD/BON219nimak BoxUBN254.8118-165.86175448.71-16551.70 CTD/BON165nimak BoxUBN354.8653-165.66675451.92-16540.00 CTD143nimak BoxUBN454.9307-165.48335455.84-16529.00 CTD/BON124nimak BoxUBN554.9860-165.28435459.16-16517.06 CTD116nimak BoxUBN655.0465-165.1117552.79-1656.70 CTD/BON113nimak BoxUBN655.0465-165.1117552.79-1656.70 CTD/BON123nimak BoxUBN655.0465-165.1117552.79-1656.70 CTD/BON113nimak BoxUBN655.0465-165.1117552.79-1656.70 CTD/BON123nimak Box<	nimak BoxUBS454.3383-165.43485420.30-16526.09 CTD/BON156nimak BoxUBW154.3615-165.93355421.69-16556.01 CTD/BON475nimak BoxUBW254.4742-166.03805428.45-1662.28 CTD/BON534nimak BoxUBW354.5813-166.12285434.88-1667.37 CTD415nimak BoxUBW454.6863-166.23985441.18-16614.39 CTD/BON293nimak BoxUBN154.7535-166.05635445.21-1663.38 CTD/BON219nimak BoxUBN254.8118-165.86175448.71-16551.70 CTD/BON165nimak BoxUBN354.8653-165.66675451.92-16540.00 CTD143nimak BoxUBN454.9307-165.28435459.16-16517.06 CTD116nimak BoxUBN554.9860-165.28435459.16-16517.06 CTD116nimak BoxUBN655.0465-165.1117552.79-1656.70 CTD/BON113nimak BoxUBE154.9370-164.99285456.22-16459.57 CTD/BON93nimak BoxUBE254.8273-164.88955449.64-16453.37 CTD76
nimak Box UBW2 54.4742 -166.0380 54 28.45 -166 2.28 CTD/BON 534 nimak Box UBW3 54.5813 -166.1228 54 34.88 -166 7.37 CTD 415 nimak Box UBW4 54.6863 -166.2398 54 41.18 -166 14.39 CTD/BON 293 nimak Box UBN1 54.7535 -166.0563 54 45.21 -166 3.38 CTD/BON 219 nimak Box UBN2 54.8118 -165.8617 54 48.71 -165 51.70 CTD/BON 165 nimak Box UBN3 54.8653 -165.6667 54 51.92 -165 40.00 CTD 143 nimak Box UBN3 54.9307 -165.4833 54 55.84 -165 29.00 CTD/BON 124 nimak Box UBN5 54.9860 -165.2843 54 59.16 -165 17.06 CTD 116 nimak Box UBN6 55.0465 -165.1117 55 2.79 -165 6.70 CTD/BON 113 nimak Box UBN6 55.0465	Image SolverJest Solv
nimak Box UBW3 54.5813 -166.1228 54 34.88 -166 7.37 CTD 415 nimak Box UBW4 54.6863 -166.2398 54 41.18 -166 14.39 CTD/BON 293 nimak Box UBN1 54.7535 -166.0563 54 45.21 -166 3.38 CTD/BON 219 nimak Box UBN2 54.8118 -165.8617 54 48.71 -165 51.70 CTD/BON 165 nimak Box UBN3 54.8653 -165.6667 54 51.92 -165 40.00 CTD 143 nimak Box UBN4 54.9307 -165.4833 54 55.84 -165 29.00 CTD/BON 124 nimak Box UBN5 54.9860 -165.2843 54 59.16 -165 17.06 CTD 116 nimak Box UBN6 55.0465 -165.1117 55 2.79 -165 6.70 CTD/BON 113 nimak Box UBF1 54.9370 -164.9928 54 56.32 164 50.57 CTD/BON 113 <td>nimak BoxUBW354.5813-166.12285434.88-1667.37 CTD415nimak BoxUBW454.6863-166.23985441.18-16614.39 CTD/BON293nimak BoxUBN154.7535-166.05635445.21-1663.38 CTD/BON219nimak BoxUBN254.8118-165.86175448.71-16551.70 CTD/BON165nimak BoxUBN354.8653-165.66675451.92-16540.00 CTD143nimak BoxUBN454.9307-165.48335455.84-16529.00 CTD/BON124nimak BoxUBN554.9860-165.28435459.16-16517.06 CTD116nimak BoxUBN655.0465-165.1117552.79-1656.70 CTD/BON113nimak BoxUBE154.9370-164.99285456.22-16459.57 CTD/BON93nimak BoxUBE254.8273-164.88955449.64-16453.37 CTD76</td>	nimak BoxUBW354.5813-166.12285434.88-1667.37 CTD415nimak BoxUBW454.6863-166.23985441.18-16614.39 CTD/BON293nimak BoxUBN154.7535-166.05635445.21-1663.38 CTD/BON219nimak BoxUBN254.8118-165.86175448.71-16551.70 CTD/BON165nimak BoxUBN354.8653-165.66675451.92-16540.00 CTD143nimak BoxUBN454.9307-165.48335455.84-16529.00 CTD/BON124nimak BoxUBN554.9860-165.28435459.16-16517.06 CTD116nimak BoxUBN655.0465-165.1117552.79-1656.70 CTD/BON113nimak BoxUBE154.9370-164.99285456.22-16459.57 CTD/BON93nimak BoxUBE254.8273-164.88955449.64-16453.37 CTD76
Initial Box UBV4 54.8863 -166.2398 54 41.18 -166 14.39 CTD/BON 293 nimak Box UBN1 54.7535 -166.0563 54 45.21 -166 3.38 CTD/BON 219 nimak Box UBN2 54.8118 -165.8617 54 48.71 -165 51.70 CTD/BON 165 nimak Box UBN3 54.8653 -165.6667 54 51.92 -165 40.00 CTD 143 nimak Box UBN4 54.9307 -165.4833 54 55.84 -165 29.00 CTD/BON 124 nimak Box UBN5 54.9860 -165.2843 54 59.16 -165 17.06 CTD 116 nimak Box UBN6 55.0465 -165.1117 55 2.79 -165 6.70 CTD/BON 113 nimak Box UBF1 54.9370 -164.9928 54 56.23 164 50.57 CTD/BON 124	Initiak BoxUBN154.0803-106.23985441.18-16614.39 CTD/BON293nimak BoxUBN154.7535-166.05635445.21-1663.38 CTD/BON219nimak BoxUBN254.8118-165.86175448.71-16551.70 CTD/BON165nimak BoxUBN354.8653-165.66675451.92-16540.00 CTD143nimak BoxUBN454.9307-165.48335455.84-16529.00 CTD/BON124nimak BoxUBN554.9860-165.28435459.16-16517.06 CTD116nimak BoxUBN655.0465-165.1117552.79-1656.70 CTD/BON113nimak BoxUBE154.9370-164.99285456.22-16459.57 CTD/BON93nimak BoxUBE254.8273-164.88955449.64-16453.37 CTD76
nimak Box UBN2 54.8118 -165.8617 54 48.71 -165 51.70 CTD/BON 165 nimak Box UBN3 54.8653 -165.6667 54 51.92 -165 40.00 CTD 143 nimak Box UBN4 54.9307 -165.4833 54 55.84 -165 29.00 CTD/BON 124 nimak Box UBN5 54.9860 -165.2843 54 59.16 -165 17.06 CTD 116 nimak Box UBN6 55.0465 -165.1117 55 2.79 -165 6.70 CTD/BON 113 nimak Box UBF1 54.9370 -164.9928 54 56.22 164 50.57 CTD/DON 02	nimak Box UBN2 54.8118 -165.8617 54 48.71 -165 51.70 CTD/BON 165 nimak Box UBN3 54.8653 -165.6667 54 51.92 -165 40.00 CTD 143 nimak Box UBN4 54.9307 -165.4833 54 55.84 -165 29.00 CTD/BON 124 nimak Box UBN5 54.9860 -165.2843 54 59.16 -165 17.06 CTD 116 nimak Box UBN6 55.0465 -165.1117 55 2.79 -165 6.70 CTD/BON 113 nimak Box UBE1 54.9370 -164.9928 54 56.22 -164 59.57 CTD/BON 93 nimak Box UBE2 54.8273 -164.8895 54 49.64 -164 53.37 CTD 76
пітак вох UBN3 54.8653 -165.6667 54 51.92 -165 40.00 CTD 143 nimak Box UBN4 54.9307 -165.4833 54 55.84 -165 29.00 CTD/BON 124 nimak Box UBN5 54.9860 -165.2843 54 59.16 -165 17.06 CTD 116 nimak Box UBN6 55.0465 -165.1117 55 2.79 -165 6.70 CTD/BON 113 nimak Box UBF1 54.9370 -164.9928 54 56.23 164 50.57 CTD/BON 124	nimak BoxUBN354.8653-165.66675451.92-16540.00 CTD143nimak BoxUBN454.9307-165.48335455.84-16529.00 CTD/BON124nimak BoxUBN554.9860-165.28435459.16-16517.06 CTD116nimak BoxUBN655.0465-165.1117552.79-1656.70 CTD/BON113nimak BoxUBE154.9370-164.99285456.22-16459.57 CTD/BON93nimak BoxUBE254.8273-164.88955449.64-16453.37 CTD76
nimak Box UBN5 54.9860 -165.2843 54 59.16 -165 17.06 CTD 116 nimak Box UBN6 55.0465 -165.1117 55 2.79 -165 6.70 CTD/BON 113 nimak Box UBF1 54.9370 -164.9928 54 56.22 164 50.57 CTD/BON 22	nimak Box UBN5 54.9860 -165.2843 54 59.16 -165 17.06 CTD 116 nimak Box UBN6 55.0465 -165.1117 55 2.79 -165 6.70 CTD/BON 113 nimak Box UBE1 54.9370 -164.9928 54 56.22 -164 59.57 CTD/BON 93 nimak Box UBE2 54.8273 -164.8895 54 49.64 -164 53.37 CTD 76
nimak Box UBN6 55.0465 -165.1117 55 2.79 -165 6.70 CTD/BON 113 nimak Box UBF1 54.9370 -164.9928 54 56.22 164 50.57 CTD/BON 22	nimak BoxUBN655.0465-165.1117552.79-1656.70 CTD/BON113nimak BoxUBE154.9370-164.99285456.22-16459.57 CTD/BON93nimak BoxUBE254.8273-164.88955449.64-16453.37 CTD76
	nimak Box UBE2 54.8273 -164.8895 54 59.64 -164 53.37 CTD 93

19	SBE-39			
23	MTR/MTR			
27	S	SBE-39		
31	MIC	CROCAT		
35	S	BE-39		
40	МТ	r/mtr		
45	S	BE-39		
50	МТ	r/mtr		
55	MIC	CROCAT		
60	М	R/MTR		
67	МТ	r/mtr		
72	BC	воттом		
\square	NOA	A-PMEL-FO	CI	
	7600 San Seattle, W (206) 526-	dpoint Way NE Va. 98115 -6175		
IOORING:	14BS-4B			
OCATION:	BERING SE	EA, SITE 4		
ESIGN BY: MIKE CRAIG			014	
RAWN BY:		DATE :		

	Ą								
	¢	4.25 METERS CHAIN							
	þ								
	<u>A</u>	1/2" SAS			DE				
40 METER	Ę	SBE-39		USE NO LOOSE CH	IAIN				
	Ŭ,	1/2"SAS		ţ					
	Ċ,								
	þ	4.25 METERS CHAIN			30" FLOAT				
	C C								
	þ			V	5/8"SAS				
	щ Г	1/2" SAS		*	5/8"SAS				
45 METER	H	SBE-39			30" FLOAT				
	Ĩ	1/2"SAS							
	Ģ	4.25 METERS CHAIN		ğ	5/8"SAS				
	þ			illin K	1/2" SAS				
	i i i i i i i i i i i i i i i i i i i	1/2" SAS	17 METERS		MICROCAT				
50 METER	u∰a	SBE-39		IJ					
	Ĩ	1/2 545		ų.	1/2" SAS				
	ų Q	4.25 METERS CHAIN		ilfin A	1/2" SAS				
	þ	1/2"SAS	18 METER	F	ECOFLUOROMETER				
		1/2 0/10		ų	IN MICROCAT CAGE				
55 METER	F	MICROCAT		ţ.	1/2" SAS				
	Ľ			8	1.5 METERS CHAIN				
	÷	1/2"SAS		þ					
	0	4 METERS CHAIN		щ. Г	1/2" SAS				
	þ		20 METER	U	SBE-39/P				
	9	1/2" SAS		ů.	1/2"SAS				
60 METER	E	SBE-39		¢	2.25 METERS CHAIN				
	7- Be	1/2"SAS		Ĩ,	1/2" SAS				
	ļ		23 METER	Ē	SBE-39				
	Ģ	6.25 METER CHAIN		B	1/2"SAS				
	Ç			<u> </u>					
	ļ.	1/2" SAS		<u> </u>					
67 METER	E	SBE-39		0	3.25 METERS CHAIN				
	7	1/2"SAS		P					
		3 TON SWIVEL		Ē	1/2" SAS				
		5/8" SAS 5/8" SAS	27 METER	Ll M	SBE-39				
					5/8"SAS				
		EG&G RELEASE				SUBSURF	ACE INSTRU	MENTS	
	মি				41" FLOAT	DEPTH	INS	5T.	SER #
	<u>d</u>	5/8" SAS				1/			
	Ģ				E/0#0.4.0	18		ometer 30/D	
	Å	1.5 METER CHAIN		T	JIO ONO	20	SRF	-39	
	ģ			ģ	3 METERS CHAIN	27	SBE	-39	
	ų,	5/8" SAS		ų D	1/2"SAS	32	MICRO	CAT/P	
	(^o)				2	35	SBE	-39	
	· · · · ·	2,500 POUND ANCHOR	32 METER	H	MICROCAT/P	40	SBE	-39	
				ų		45	SBE	-39	
				t	1/2"SAS	50	SBE	-39	
				ģ		55	MICRO		
				Ç,	2 METERS CHAIN	67		-39 -30	
					1/2" SAS	70	BOTT	TOM	
			35 METER	Ę	SBE-39		NOA	A-PMEL-F	
				Ċ	1/2"SAS		7600 San	dpoint Way NE	
							Seattle, V (206) 526	Va. 98115 -6175	
						MOORING:	14BS-	-5A	
						LOCATION:	BFRIN	G SEA. SITF	5
						DRAWN BY:		DATE:	-
						APPROVED BY:	KE CRAIG	11 JULY	r 2014

23	SBE-39/P
27	SBE-39
31	MICROCAT/P
35	SBE-39
40	SBE-39/P
45	SBE-39
50	SBE-39/P
55	MICROCAT
60	SBE-39
67	SBE-39
71	BOTTOM
\frown	NOAA-PMEL-FOCI
	7600 Sandpoint Way NE Seattle, Wa. 98115 (206) 526-6175
MOORING:	14BS-8A

	7600 Sandpoint Way NE Seattle, Wa. 98115 (206) 526-6175				
MOORING	MOORING: 14BS-8A				
LOCATION	LOCATION: BERING SEA, SITE 8				
DESIGN BY: M	IKE CRAIG	DATE : 12 MAY 2014			
DRAWN BY:		DATE :			

	Kecords for Moo	ring: 15BSM-2A		
Deployment <u>Recovery</u>				
Cruise Number:	DY1504	Cruise Number:		
Deployment Date/Time (GMT):	Recovery Date/Time (GMT):		
GPS latitude:	15-05-01 04:57:59 56 51.995 N	GPS latitude:		
GPS longitude:	164 2.996 W	GPS longitude:		
CTD cast no:	CTD022	CTD cast no:		
Actual Deployment Dept	:h (m): 0			
Timekeeper:	Peter Proctor	Timekeeper:		
Chief Scientist:	Peter Proctor	Chief Scientist:		
	<u>Pre-Dep</u>	loyment		
Estimated latitude (N)	:	56 52.0 N		
Estimated longitude (W): 164 3.0 W				
Estimated Deploymen	t depth:	72		
Estimated Recovery D	ate:	2015-10-01		

Records for Mooring: 15BSP-2A				
<u>Deployment</u> <u>Recovery</u>				
Cruise Number:	DY1504	Cruise Number:		
Deployment Date/Tim	e (GMT):	Recovery Date/Time (GMT):		
GPS latitude:	2015-05-02 04:33:00 56 52.00 N	GPS latitude:		
GPS longitude:	164 04.00 W	GPS longitude:		
CTD cast no:	CTD027	CTD cast no:		
Actual Deployment Deployment	epth (m): 73			
Timekeeper:	Peter Proctor	Timekeeper:		
Chief Scientist:	Peter Proctor	Chief Scientist:		
	<u>Pre-Dep</u>	loyment		
Estimated latitude (l	N):	56 52 N		
Estimated longitude (W): 164 4 W				
Estimated Deploym	ent depth:	72		
Estimated Recovery	Date:	2015-10-01		

DEPTH M	SERIAL NO.			
60				
64				
66.5	UAF			
68				
72				
NOAA-PMEL-FOCI 7600 Sandpoint Way NE Seattle, Wa. 98115 (208) 526-6180				
2A				
DATE:	IL 2015			
	DEPTH M 60 64 66.5 68 72 - PMEL andpoint 36-6180 ZA DATE: 7 APR			

Common Name	Amount	Respondee	Spill Response
Formaldehyde 37%	2 - 20 l, 1 - 15 l	Chief Scientist	Gloves
			Eye Protection
			Fan-Pads
			Formalex
			Plastic Bag
Ethyl Alcohol 100% Genetic Grade	2 - 4 I, 1 - 0.75 I	Chief Scientist	Gloves
			3M Sorbent Pads
			Plastic bag
Sodium Borate Solution, Saturated 5-6%	1 - 20 I	Chief Scientist	Gloves
			Paper towels
			Plastic bag
Sodium Borate Powder	1 - 500 g	Chief Scientist	Gloves
			Wet paper towels
			Plastic Bag
3M Manganese chloride	2 - 500ml = 1000ml	Peter Proctor	Gloves
			Plastic Bag
			Broom/dustpan
			Absorbant (kitty litter)
4M Sodium iodide/8M Sodium hydroxide	2 - 500ml = 1000ml	Peter Proctor	Gloves
			Plastic Bag
			Broom/dustpan
			Base neutralizer
			Absorbant (kitty litter)
5M Sulfuric acid	2 - 500ml = 1000ml	Peter Proctor	Gloves
			Plastic Bag
			Broom/dustpan
			Acid neutralizer
			Absorbant (kitty litter)
0.16M Sodium thiosulfate	2 - 500ml = 1000ml	Peter Proctor	Gloves

			Plastic Bag Broom/dustpan
0.0016M Potassium iodate	2 - 500ml = 1000ml	Peter Proctor	Gloves Plastic Bag Broom/dustpan
Decontamination Concentrate Solution 5.25%	40ml	Lisa Eisner	Spill control A
Bacteriostatic Concentrate Solution	36ml	Lisa Eisner	Spill control A
Extended Flow Cell Clean 5%	8ml	Lisa Eisner	Spill control A
Citric Acid, anhydrous > 99%	25g	Lisa Eisner	Spill control A
Potassium Nitrate 15N	1mg	Lisa Eisner	Gloves Plastic Bag Broom/dustpan

SPILL CONTROL

A: ACID

Wear appropriate protective equipment and clothing during clean-up. Keep upwind. Keep out of low areas.

□ Ventilate closed spaces before entering them.

Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible.

Large Spills: Dike far ahead of spill for later disposal. Use a non-combustible material like vermiculite,

sand or earth to soak up the product and place into a container for later disposal.

Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove

residual contamination.

Never return spills in original containers for re-use.

Neutralize spill area and washings with soda ash or lime. Collect in a non-combustible container for

prompt disposal.

J. T. Baker NEUTRASORB®acid neutralizers are recommended for spills of this product.

Notes

Dyson loaded 2/4/2014, working volume for all Spring and Fall projects. MSDS, hygiene plan, and SOPs provided at time of loading.

Loaded 2/4/2014, working volume for all Spring and Fall projects.

Loaded 2/4/2014, not a regulated chemical

Loaded 2/4/2014, not a regulated chemical (in spill kit)

On board

On board

On board

On board

On board

For use in cleaning flow cytometer. Store in Chem lab cabinets

For use in cleaning flow cytometer. Store in Chem lab cabinets

For use in cleaning flow cytometer. Store in Chem lab cabinets

For use in cleaning flow cytometer. Store in Chem lab cabinets

For Primary Production expts. Store in Chem lab cabinets